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ABSTRACT

This article reviews recent advances in the theoretical description of ion-atom collisions,
which were made on the basis of a quantum mechanical description of the electron dy-
namics and a classical treatment of the heavy particle motion. It is explained how time-
dependent density functional theory provides a suitable framework for the discussion of
single- and many-electron effects and processes and how the recently developed basis gen-
erator method accomplishes the task of atomic orbital propagation including the electron
continuum. Results for ionisation and electron transfer are discussed for a variety of col-
lision systems, covering positively and negatively charged projectiles, and targets ranging
from hydrogen to argon atoms. Emphasis is put on the analysis of different facets of
the electron interaction and dynamics, which are revealed by comparing different models
among themselves and with experimental data.

1 INTRODUCTION

Atomic collisions and the behaviour of the participating electrons in particular, have
been investigated experimentally and theoretically for many years. Such studies fostered
a wealth of applications spanning such widely differing areas as plasma diagnostics [1],
atmospheric science [2], radiobiolgy and tumor therapy [3]. Moreover, the subject has
contributed considerably to our general understanding of interacting few-body systems
which are governed by the laws of quantum mechanics.

On the experimental side a major breakthrough in recent years has been the development
of the so-called cold target recoil ion momentum spectroscopy (COLTRIMS) [4]. This
technique aims at the determination of the momenta of all free particles in the exit channel
of a collision in order to obtain a complete picture of the collision dynamics. Several
groups around the world are currently using variants and extensions of COLTRIMS to
investigate, e.g., single and multiple electron emission from atoms and molecules induced
by photons, electrons, and ions, charge-transfer in ion-atom collisions, and more recently,
ionisation of atoms and molecules by intense short laser pulses. The most recent results
are reviewed in [5].

The theoretical description of these modern atomic collision experiments turned out to
be very demanding. Only recently has it become possible to calculate successfully for
one- and two-electron scattering systems the fine details of electron removal processes
(see, e.g., [6, 7] and the recent review [8]). A similar situation is encountered in the
determination of accurate total cross sections at intermediate impact energies, where, in
general, different reaction channels are coupled [9, 10]. A large body of experimental data
is still unexplained, particularly if systems with several active electrons are considered.
This reflects the complexity and the intricacies of the quantum many-body problem in
situations, in which energy and momentum are available to induce inelastic transitions. A
simple estimate shows that despite the tremendous increase of available computer power
the full solution of the Schrödinger equation that describes a many-electron scattering
problem will be out of reach for some time to come [11]. The main problem is, of course,
the two-body nature of the electron-electron interaction, which couples the coordinates
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of all electrons and prohibits the factorisation of the many-electron wave function into
several one-electron states. Thus, it is the presence of electron correlation effects which
makes the theoretical treatment of such collision systems so challenging.
The present article deals with ion-atom collisions at intermediate impact energies, where
electron excitation, transfer, and ionisation processes compete with each other and call
for a nonperturbative theoretical treatment. Several approaches have been proposed in
recent years with the aim to reduce the computational complexity of a complete many-
body treatment without neglecting electronic correlations entirely [11, 12, 13]. Up to now,
however, only two-electron scattering systems have been addressed in these frameworks,
which indicates their still demanding nature.
In order to deal also with true many-electron systems we have approached the problem
from a different perspective, based on the concepts of time-dependent density functional
theory (TDDFT). The calculations are performed with the newly developed basis gener-
ator method (BGM), and special attention is given to the question of how to extract the
physical information from the propagated equations. Thus, we have a new methodology
to describe systems involving one, two, and many active electrons. The present paper
reviews this approach with emphasis on the discussion of results, which are selected from
a series of recent papers.
The salient points of the theoretical description are summarized in Sec. 2. In Sec. 3 we
present results for collision systems with one active electron to illustrate the capabilities
of the BGM. Section 4 is devoted to many-electron systems. First, we discuss one-electron
processes in Sec. 4.1, and then we consider multiple-electron processes in Secs. 4.2 and
4.3. The results are summarised in Sec. 5. Some extensions of the approach, such as the
discussion of laser-assisted collisions are briefly sketched in Sec. 6 together with a short
outlook on future investigations. Atomic units (h̄ = me = e = 1) are used throughout the
article unless indicated otherwise.

2 THEORY

Within the well-established semiclassical approximation (SCA) [14] ion-atom collisions are
viewed as time-dependent processes, in which the quantum dynamics of the electrons are
governed by their internal interactions and by the Coulomb fields of the classically moving
nuclei. For collision energies above EP ≈ 1 keV/amu the projectile motion is commonly

approximated by a straight-line trajectory ~R(t) = (b, 0, vpt) with impact parameter b and
constant velocity vP . In this framework one has to solve a time-dependent Schrödinger
equation (TDSE) for the many-electron state Ψ(t)

i ∂tΨ(t) = Ĥ(t)Ψ(t) , (1)

with a Hamiltonian
Ĥ(t) = T̂ + Ŵ + V̂ (t) (2)

that includes the kinetic energy

T̂ =
N
∑

j=1

(−
1

2
∇2

j) , (3)
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the electron-electron interaction

Ŵ =
N
∑

i<j=1

1

|~ri − ~rj|
, (4)

and the Coulomb potentials of the target and the projectile nuclei with charges ZT and
ZP , respectively

V̂ (t) =
N
∑

j=1

(

−ZT

rj

+
−ZP

|~rj − ~R(t)|

)

. (5)

Spin-dependent interactions and relativistic effects are neglected, but we note that the
electron spin enters the treatment via the spin-statistics theorem as the requirement that
the many-electron wave function Ψ(t) be antisymmetric (see Sec. 2.3).
The task is now to propagate Ψ(t) from a given initial state

Ψ(t0) = Ψ0 (6)

to a final time t = tf , which is large enough to ensure convergence with respect to time
for the observables of interest. At tf we wish to calculate impact-parameter-dependent
probabilities for transitions to final states Φf

Pf (b) = |〈Φf |Ψ〉|2t=tf
(7)

and corresponding total cross sections

σf = 2π
∫

∞

0
bPf (b)db . (8)

Cross sections which are differential in the projectile deflection can also be calculated
within the SCA by a Bessel transform of the transition amplitudes [15]. In this article,
however, we will be mainly concerned with total cross sections.
In the next two subsections we explain briefly how the time-dependent many-electron
problem (1) is mapped onto a set of single-particle equations by virtue of the Runge-
Gross theorem of TDDFT and how we solve these equations. After that, we describe
in Sec. 2.3 how probabilities for many-electron transitions (7) can be extracted from the
single-particle solutions.

2.1 TIME-DEPENDENT DENSITY FUNCTIONAL THEORY

A nonrelativistic electronic system coupled to a time-dependent classical environment with
which it exchanges energy is described by the TDSE (1). The Hamiltonian can generally
be decomposed according to Eq. (2) into a universal time-independent part including the
kinetic energy (3) and the mutual Coulomb repulsion between the electrons (4), and the
system-specific external potential [cf. Eq. (5)]

V̂ (t) =
N
∑

j=1

v(~rj, t) . (9)
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The latter characterises the particular geometry as well as the explicit time dependence
of the electronic system due to its interaction with the classical environment (in our case
the classically moving nuclei).
The basic idea behind density functional theory (DFT) is the existence of a unique map
between the many-electron state Ψ(t) and the one-particle density n of the system

n(~r, t) = N
∑

s

∫

d4x2 . . .d4xN |Ψ(~x1, . . . ~xN , t)|2 , (10)

where ~xj = (~r, s) denotes coordinates and spin of the j-th electron and d4xj indicates
summation over spin and integration over space coordinates, respectively (for reviews on
time-dependent DFT see [16, 17, 18, 19]. A comprehensive introduction to stationary
DFT can be found in [20].).
The Runge–Gross theorem [21] proves the uniqueness of the functional Ψ[n](t) up to a
merely time-dependent phase factor, if the many-electron system evolves from a non-
degenerate initial ground state. This is a very powerful statement. It implies that, in
principle, the complete information that is contained in the many-electron wave function
can be reconstructed from the one-particle density (10), i.e., it suffices to calculate the
latter in order to evaluate the observables of the many-electron system.
The gist of DFT is, thus, the determination of the exact one-particle density without
calculating the many-electron wave function. In the Kohn-Sham (KS) scheme, which
represents the most popular DFT scheme one assumes that the density can be represented
in terms of a set of N orbitals {ϕj, j = 1, . . . N}

n(~r, t) =
N
∑

j=1

|ϕj(~r, t)|
2 , (11)

which fulfil single-particle Schrödinger — so-called time-dependent Kohn-Sham (TDKS)
— equations of the form

i ∂tϕj(~r, t) = ĥ(t)ϕj(~r, t) =

(

−∇2

2
+ vKS(~r, t)

)

ϕj(~r, t) , j = 1, . . .N . (12)

Thus, the many-electron problem is mapped to a set of single-particle equations. The
KS orbitals {ϕj, j = 1, . . . N} have no physical meaning; it is the density n which fully
determines the time evolution of the N -particle system.
The Kohn-Sham potential vKS is a unique functional of n which is again a consequence
of the Runge–Gross theorem. However, this functional is not known exactly. One usu-
ally separates the KS potential into an electrostatic part, which consists of the external
(Coulomb) interaction v(~r, t) and the Hartree potential vH that accounts for the screen-
ing of the external potential due to the electrons, and an intrinsic quantum part vxc, the
exchange-correlation potential

vKS[n](~r, t) = v(~r, t) + vH[n](~r, t) + vxc[n](~r, t) (13)

vH[n](~r, t) =
∫

d3r′
n(~r ′, t)

|~r − ~r ′|
.
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For time-dependent systems the inclusion of correlation is still out of reach restricting
applications to the level of an exchange-only (x-only) approximation vx of the KS po-
tential. The optimised (effective) potential method (OEP → OPM) originally introduced
by Talman and Shadwick [22] and frequently applied to static problems [23] provides a
scheme to exactly determine the exchange potential as a unique functional of n. The fact
that this functional is local in space clearly demonstrates the merit of DFT in comparison
with the Hartree-Fock (HF) method.

2.2 THE BASIS GENERATOR METHOD (BGM)

The numerical solution of the time-dependent Schrödinger or KS equations (12) for an
electronic system is quite involved. The long-range behaviour of the Coulomb interaction
requires numerical methods of sufficient accuracy and stability over large time scales to
account for the considerable delocalisation of the electronic density during the collision
process. As a consequence, a broad spectrum of numerical methods has been devel-
oped in particular for ion-atom collisions: (i) lattice techniques discretising the TDSE
in configuration space [24], momentum space [25] or a combination thereof based on
Fast-Fourier Transform algorithms [6, 26], (ii) expansion methods relying on single-centre
[27, 28, 29, 30] or two-centre [31] basis sets, (iii) the hidden crossing method [32] valid for
adiabatic collisions, and with a broad range of applications (iv) the classical trajectory
Monte Carlo method [33, 34, 35], which simulates the electronic system in terms of a
statistical ensemble of classical point charges.
While lattice techniques and expansion methods are motivated by making an attempt
at the completeness of the representation of the Hilbert space H, the philosophy of the
basis generator method (BGM) [36] is different. Given that the time-dependent state
|Ψ(t)〉 defines a one-dimensional subspace of H completeness is not an essential quality
criterion: if one could generate a dynamic subspace embedding the path of the exact state
like a ’hose’, one could dramatically reduce the effort needed for the numerical solution
of the TDSE.
The BGM starts with a finite set of eigenfunctions of the undisturbed system

ĥ0|φ
0
v〉 = εv|φ

0
v〉 , v = 1, . . . , V

ĥ0 =
−∇2

2
+ vKS(~r, t0) , (14)

which is called the generating basis. Successive mapping of these functions with the single-
particle Schrödinger operator Ô = ĥ(t) − i∂t generates a hierarchy of V −dimensional
subspaces of the Hilbert space

|φu
v(t)〉 = Ô|φu−1

v (t)〉

= Ôu|φ0
v〉 , v = 1, . . . , V , u = 1, . . . , U , (15)

with the following properties:

• The set of states {|φu
v(t)〉, v = 1, ..., V ; u = 0, ..., U} is linearly independent and

forms a dynamic subspace AUV of H.
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• For u < U the states of Eq. (15) interact merely within the hierarchy of finite
subspaces. This means that only the states belonging to the U -th subset couple to
the infinite complementary space of AUV . If these states are not accessed during
the time propagation, the pseudostates (15) enable an exact representation of the
TDSE.

The structure of the states defined in Eq. (15) becomes rather involved with increasing
order u. For a given interaction v̂(t) it is, thus, useful to introduce an alternative set of
states {|χµ

ν(t)〉, ν = 1, . . . , N, µ = 0, . . . , M} with

|χµ
ν(t)〉 = v̂(t)µ|χ0

ν〉 , (16)

generating a second finite model space RMN . It can be shown [37] that for any given
(U, V ) there exist finite numbers M(U, V ) and N(U, V ) such that AUV ⊆ RMN if the
following conditions are fulfilled:

• The generating basis of Eq. (14) (including the physical initial condition) is con-
tained in R0N ;

• The operator Ô maps each state |χµ
ν(t)〉 onto a finite linear combination Lµν of the

states {|χκ
λ(t)〉}

Ô|χµ
ν(t)〉 = Lµν({|χ

κ
λ(t)〉}) ∈

[

|χκ
λ(t)〉, λ = 1, . . . , L, κ = 0, . . . , K

]

, (17)

where L = L(µ, ν) and K = K(µ, ν).

For potentials v̂(t) that can be expanded in a power series of a pure Coulomb potential —
which has to be regularised at ~r → 0 (see Sec. 3) — the space RMN includes the optimised
space AUV . The KS orbitals {ϕj, j = 1, . . . N} are then represented in terms of the states
(16) and the resulting set of ordinary differential equations is eventually solved by standard
methods.

2.3 EXTRACTION OF MANY-ELECTRON TRANSITION

PROBABILITIES

The existence of a unique map between the many-electron state Ψ(t) and the one-particle
density n implies that, in principle, any many-electron observable can be derived directly
from n. In practice, however, the usefulness of this statement is limited, since only a few
functionals for accessible observables are known exactly. Important examples are the so-
called net probabilities, which correspond to the average numbers of electrons which are,
e.g., bound to the target, to the projectile, or released to the continuum. They are given
asymptotically as integrals of n over the corresponding regions in coordinate space [19].
Less global quantities, however, can at present only be computed in the no-correlation
limit of TDDFT, in which the KS orbitals are assumed to carry the physical information
about the active electrons. This corresponds to an analysis of the collision system at
the level of the independent particle model (IPM)1. Within the IPM, one starts with the

1A (modest) step beyond the no-correlation limit was taken recently in Ref. [38].
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calculation of single-particle probability amplitudes for elastic scattering, excitation, and
capture by projecting the KS orbitals at t = tf onto a set of bound target and projectile
states. With the assumption that the propagated and the final many-electron states are
single Slater determinants one finds that the inclusive probability Pf1,...,fq

of finding q out
of N electrons in states labeled f1, . . . , fq, while the other N −q electrons are not detected
can be expressed as a q × q determinant of the one-particle density matrix [39]

Pf1,...,fq
= det(〈f1|n̂|f1〉 · · · 〈fq|n̂|fq〉) . (18)

Higher inclusive probabilities, such as q-particle ionisation P ion
q , capture P cap

q , and loss
P loss

q = P ion
q + P cap

q can be expressed as ordered sums of the probabilities (18) [40].
In many situations, namely when the number of final states which correspond to the
observable of interest is large, the determinantal structure of the transition probabilities
can be neglected. In these cases one arrives at multinomial expressions of single-particle
transition probabilities, which have been used widely over many years [41, 42]. If pi

denotes the single-particle probability, e.g., for ionisation of an electron from the i-th
shell the probability for q-fold ionisation is given as

P ion
q =

N1,...,Nm
∑

q1,...,qm=0, q1+···+qm=q

m
∏

i=1

(

Ni

qi

)

pqi

i (1 − pi)
Ni−qi , (19)

where m denotes the number of electron shells and Ni the number of electrons within
these shells. Formula (19) is readily extended to charge-state correlated events, i.e., k-
fold capture associated with l-fold ionisation. However, the straightforward multinomial
formulae have a well-known deficiency: They are inappropriate for situations, in which the
probability for, e.g., a one-particle transition (such as single capture) is strong, whereas
multiple-particle transitions are very unlikely or completely unphysical, as they might
correspond to the formation of unstable negative ions.
To overcome this problem, we have introduced an alternative statistical procedure in
Ref. [43], which we call the products-of-binomials analysis. In this model, the calculated
net capture probability P cap

net is distributed over the physically allowed capture multiplici-
ties k = 1, . . . , NP by carrying out binomial statistics on the basis of a new single-particle
probability pcap ≡ P cap

net /NP . Capture of more electrons than can be accomodated by
the projectile is thus eliminated. The charge-state correlated probabilities Pkl for k-fold
capture with simultaneous l-fold ionisation are then obtained by multiplying the k-fold
capture probability

P cap
k =

(

NP

k

)

(pcap)k(1 − pcap)NP−k (20)

by independent l-fold binomial ionisation probabilities [calculated according to Eq. (19)]

Pkl = P cap
k P ion

l . (21)

The products-of-binomials analysis can be viewed as a step beyond the strict IPM, in
which the transitions of one electron are not influenced by the transitions of the others,
and it has been applied with some success (cf. Secs. 4.1 and 4.3). However, it can also be
criticised as it is not based on first-principles arguments and leads to a slight imperfection
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in the overall probability conservation [43]. We emphasise that a first-principles analysis
of the density (11) or the KS orbitals that would go beyond the IPM and would thereby
solve the problem of multiple transitions to unphysical final states is highly desirable, but
currently not available.

3 SYSTEMS WITH ONE ACTIVE ELECTRON

For a true single-particle system the most general form of the BGM-states (16) includes
powers of the projectile and the target potential

|χµµ′

ν 〉 = W µ
p W µ′

t |φ0
ν〉 , ν = [1, N(U, V )] , µ, µ′ = [1, M(U, V )] , (22)

where Wp/t are defined as regularised Coulomb interactions

Wt =
1

r
(1 − e−εr) , Wp =

1

rp

(1 − e−εrp) . (23)

In Eq. (23), r and rp = |~r − ~R(t)| denote the distances of the electron with respect to
the nuclear centres which are separated by the internuclear distance R(t). For the results
presented here and in the following sections we apply a simplified representation including
only states generated with Wt for antiprotons and Wp for positive projectiles, respectively.
The basis states |χ0

ν〉 [cf. Eq. (16)] are bound (hydrogenic) eigenfunctions, i.e., we identify
the set {|χ0

v〉, ν = 1, . . . , N} with the set {|φ0
v〉, v = 1, . . . , V }.

Figure 1: Correlation diagram of (H,H)+ (left panel) and high-energy limit of total ionisation in p-H
(right panel) calculated with identical basis sets (22): generating space of hydrogen states (1s− 4f) with
an 8-fold hierarchy of pseudo-states generated with Wp.
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Figure 1 shows two extreme situations for the collision system p-H(1s) calculated with an
identical basis set. The curves in the correlation diagram are exact solutions of the (H,H)+

quasi-molecule for σ (full line), π (dashed line), and δ (dotted line) orbitals, respectively.
The bullets show BGM results for the 16 lowest eigenvalues calculated by diagonalising
the molecular Hamiltonian in the BGM basis specified in the figure caption.
The right panel of Fig. 1 illustrates the high-energy behaviour of the total ionisation
cross section. The cross section is scaled in such a way that the exact asymptotic result
of Bethe-Born perturbation theory corresponds to a horizontal line. Our BGM results
merge with this line above 200 keV impact energy. Thus, Fig. 1 shows that the BGM
basis is able to bridge the energy range from adiabatic impact energies to the perturbative
regime.

3.1 IONISATION OF ATOMIC HYDROGEN BY

ANTIPROTONS

The collision system p̄-H proved to be a benchmark system for an adequate description of
ionisation with modern numerical algorithms. The absence of capture permits a single-
centred description of the time-dependent wave function which facilitates the investigation
of convergence properties significantly.

Figure 2: Total cross section for ionisation of hydrogen by p̄ impact as function of impact energy.
Theory: present BGM results with hydrogenic states 1s − 4f (generating basis), and hierarchy M = 8
generated with Wt; CDW-EIS [46], Wells et al. [70], Sakimoto [28], Toshima [68], Hall et al. [69], Pons
[27], Igarashi et al. [29], Schiwietz et al. [71] (taken from [69]), Experiment: [45].

Figure 2 shows the total cross section for ionisation obtained from a target-centred BGM-
basis2 in comparison with other calculations and the only experimental data set available

2these results are better converged than our previous data published in [44].
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[45]. Apart from the continuum distorted wave with eikonal initial-state (CDW-EIS)
calculation [46] which as a perturbative model is not expected to be valid below 100 keV,
the more sophisticated basis and grid methods agree within 10% and document the high
standard of modern numerical approaches. New experiments will be carried out within
the ASACUSA collaboration at CERN and are expected to confirm the relatively large
ionisation cross section at small impact energies predicted by theory.

3.2 CAPTURE IN COLLISIONS BETWEEN α-PARTICLES

AND LI-LIKE IONS

For projectiles with positive charges electron capture is a prominent channel. In the
particular case discussed here the 2s electron of a lithium-like target ion is captured
while the strongly bound K-shell electrons screen the nuclear charge, but remain passive
otherwise.

Figure 3: Capture in collisions between α-particles and Li-like ions. Left: Total cross sections for
the quasimolecular isoelectronic sequence (BHe)4+ to (OHe)7+ as functions of impact energy. Right:
Differential cross sections for (BHe)4+ at the centre of mass energies 10.18 keV and 15.3 keV (multiplied
by a factor of 0.01) as functions of the projectile scattering angle. Theory: BGM basis (22) with N = 20
and M = 8 generated with Wp [47].

In Fig. 3 we present cross sections for capture in collisions between α-particles and Li-like
ions taken from [47]. The Li-like ions are represented at the level of the x-only OPM,
with only the 2s electron propagated in the Coulomb potential of the α particle and
the frozen target potential. The different behaviour within the sequence of total cross
sections (left panel) can be attributed to the relation between the quasimolecular energies
of the entrance and the dominant capture channels [47]. The differential cross sections
(right panel) are calculated using the standard Bessel transform method introduced by
McCarrol and Salin [15]. They provide a more sensitive test of theory than total cross
sections, as they are known to be very sensitive to spurious effects in conjunction with

11



truncated basis representations. The good agreement between the BGM calculations and
the experimental data demonstrates that a fairly accurate separation between the two
rearrangement channels, namely capture and ionisation has been achieved.
In summary, the results of this section demonstrate the flexibility of the BGM approach
to adapt to different geometric and dynamic situations which are typical for ion-atom
collisions.

4 MANY-ELECTRON SYSTEMS

The discussion of many-electron systems within the TDKS framework requires first a
specification of the KS potential used given that the exact form of the potential is not
known. While the x-only OPM can be formulated not only for the static but also for the
time-dependent case [48] its implementation is extremely challenging when it comes to
the discussion of many-electron problems that involve more than two electrons.
Our works on true many-electron systems are based on a decomposition of the effec-
tive electronic interaction contribution vee of the KS potential into stationary and time-
dependent parts [cf. Eq. (13)]

vee[n](~r, t) ≡ vH[n](~r, t) + vxc[n](~r, t) (24)

= v0
ee[n0](r) + δvee[n](~r, t). (25)

Both parts are then described on different levels of approximation. Such a treatment is
not only advantageous from a practical point of view, but also useful for the identification
and separation of different physical effects, such as static exchange or dynamical screening
effects [10].
For the results presented in this and the following sections we use the x-only OPM for
the static potential v0

ee which depends only on the atomic ground-state density n0. We
consider different approximations for the time-dependent (’response’) part δvee:

• In the simplest scheme, the so-called no-response approximation we neglect it com-
pletely, i.e., we assume that δvee = 0.

• In Ref. [49] we have introduced a global model for time-dependent screening effects,
which is built on the assumption that the total KS potential can be represented as
the sum of the external projectile potential and a linear combination of ionic target
potentials weighted by time-dependent probabilities for the creation of these ions.
When the ionic potentials are approximated by the atomic ground state potential
which is scaled such that the asymptotic charges of the ions are obtained one arrives
at the expression

δvee(~r, t) ≈ δvee(r, t) =
−1

N − 1

N
∑

q=1

(q − 1)P loss
q (t)v0

ee(r). (26)

This target-response model accounts for the fact that the screening of the target
nucleus decreases during the collision when electrons are (partially) removed. One
can construct a similar scheme to account also for the time-dependent screening
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of the projectile ion due to electron capture, but these projectile-response effects
turned out to be relatively small (for low and moderately charged ion impact) [50]
and will not be considered here.

• For antiproton collisions with He atoms we have recently implemented the full time-
dependent OPM potential (which is identical with the time-dependent Hartree-Fock
(TDHF) potential in the particular case of a spin-singlet system) [51].

4.1 SINGLE CAPTURE IN PROTON COLLISIONS WITH

MANY-ELECTRON ATOMS

Single capture in proton collisions with many-electron atoms seems to be a simple pro-
cess: one electron is transferred (thereby forming a neutral hydrogen atom) while all
other electrons remain passive. However, single capture is difficult to describe in the
framework of the IPM, because it contradicts the basic assumption of statistically inde-
pendent electrons. In reality, only one out of several initially equivalent target electrons
can be captured (if the unlikely formation of negative ions is excluded), while in a straight-
forward multinomial analysis a non-zero probability for single capture implies non-zero
probabilities for higher-order capture events.

Figure 4: Single (σ10) and double (σ20) capture cross sections as functions of impact energy for p-O
(left panel) and p-Ne (right panel) collisions. Theory: TDKS calculations without target response: p-
O [43]; p-Ne [55]; Experiments: p-O [72, 73, 74, 75, 76], cf. [43]; p-Ne short-dashed line [52], closed circles,
net capture [54].

As outlined in Sec. 2.3 this problem can be avoided by re-distributing the transferred net
probability over NP = ZP electrons (ZP = 1 in our case). The results of this products-
of-binomials analysis are compared with standard trinomial results and with experiments
for single capture associated with zero-fold ionisation (σ10) in p-O and p-Ne collisions
in Fig. 4. In both cases we have included the trinomial double capture results, which
overestimate the H− production cross section at least by an order of magnitude (cf. Fig. 3
of [52]). At the same time the trinomial single-capture cross section is on the low side
of the experimental data points in the low-energy regime3. Better agreement is obtained

3The p-O experiments denoted by the open triangles are believed to be incorrect [43].
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in this region with the products-of-binomials analysis, in which the probabilities that
correspond to the artifical multiple capture channels are transferred to the single-capture
channel.

In the case of oxygen target atoms we observe a significant discrepancy with experiment at
energies EP > 10 keV, which has not been understood to the present date. One possible
problem of the calculation could be that the x-only OPM potential of atomic oxygen
predicts the eigenvalue εOPM

O(2p) = −0.614 a.u. for the 2p level, while the first ionisation
potential of atomic oxygen amounts to 0.500 a.u. [53]. As the latter equals the binding
energy of the H(1s) state one might expect that a detuning of the condition for resonant
capture can affect the results significantly. We have checked this by repeating the capture
calculation on the basis of a model potential that is designed to yield a substantially
better eigenvalue for O(2p) [43]. However, these calculations were not successful: the
capture cross section turned out too large in the low-energy regime, but did not change
significantly above EP = 10 keV.

Another concern might be the open-shell nature of atomic oxygen. We have dealt with
the oxygen structure problem on the level of an ensemble-averaging procedure over the
partially filled LII shell, which might be too crude an approximation for the description of
capture from the spin-triplet ground state configuration (1s2 2s2 2p4 3P ). Test calculations
show, however, that it is not possible to boost the capture cross section above EP =
10 keV by distributing the four valence electrons other than statistically over the LII

shell. This, of course, does not exclude the possibility that the open-shell structure might
be responsible for the observed discrepancies. It does indicate, however, that such effects
— if present — cannot be taken into account in a simple way.

Finally, we note that response effects, which were not included in the calculations are
unlikely to resolve the discrepancies. They have the tendency to reduce cross sections for
inelastic transitions (see discussion below and in the following sections), and are deemed
to be unimportant for the p-O collision system.

For Ne target atoms (right panel of Fig. 4) we did check that target response effects
[Eq. (26)] are indeed of minor significance. In this case, our results lie above the ex-
perimental data for σ10 taken from [52]. These data, however, appear to be in conflict
with the experimental net capture cross section of [54] which is also included in the fig-
ure. Net capture consists of pure single capture σ10 and the transfer ionisation channels
{σ1l, l ≥ 1}, which are, however, too weak to account for the discrepancies between both
sets of results [55]. Our calculations clearly favour the data of [54].

Recently, we have extended these capture calculations to p-Ar collisions, and have ex-
tracted shell- and state-selective cross sections [56]. Figure 5 displays data for capture
to the L and M shells of hydrogen. In both cases we obtain reasonable agreement with
the experimental data if we take target-response effects [Eq. (26)] into account. The no-
response cross sections are larger except at high energies where the collision is too fast
to be sensitive to time-dependent changes of the electronic interaction. It would be of
interest to find out whether an improved response model would change the results for
H(n = 2) formation below 10 keV where the shape of the experimental cross section is
not reproduced by the present model. For the case of H(n = 3) formation it should be
noted that the experimental data have rather large error bars (see discussion in [56]) and
that more accurate experimental data would be necessary to assess the quality of our
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Figure 5: Total cross sections for single capture to the hydrogen L (left panel) and M shells (right
panel) as functions of impact energy for p-Ar collisions. Theory: TDKS calculations without and with
target response [56]; Experiments: dashed line obtained by fitting to the experimental data summarized
in [61], symbols [77, 78, 79, 80, 81], cf. [56].

calculation in closer detail. In any case, the general agreement between the experimental
and theoretical data displayed in Fig. 5 is quite remarkable given that the magnitudes of
the L- and M -shell cross sections correspond to a few percent of the total capture only
(cf. Fig. 9).

4.2 IONISATION OF HELIUM BY ANTIPROTONS

Another prominent one-electron process in a many-electron collision problem is single
ionisation. Single ionisation — in analogy to capture — is inevitably accompanied by
multiple ionisation in the IPM. In contrast to the capture case this is not a problem in
principle, since multiple ionisation might be weak, but is never forbidden (if we exclude
very slow collisions or very tightly bound electrons, for which the impact energy might
be too low to remove several electrons). The situation is most transparent when capture
processes are completely absent, i.e., if negatively charged projectiles are used. It is
thus no surprise that antiproton collisions with noble gas atoms became popular for the
investigation of single and multiple ionisation processes and the role of the electron-
electron interaction [57].
In particular, p̄-He collisions have been studied intensively with explicit two-electron meth-
ods and with effective single-particle models. We have addressed this system recently on
the level of the x-only OPM, i.e., we have solved the single TDKS equation for the ini-
tial He(1s) orbital with full account of static and time-dependent screening and exchange
effects4, and have computed single and double-ionisation probabilities and cross sections
via the simple limit of Eq. (19) for one shell and two electrons [51].
Our results are compared with experiment and with other theoretical data in Fig. 6. For
single ionisation we have included only results of two-electron calculations which account
for electron correlation effects at least to some extent (for details see [51]). Interestingly,

4for a spin-singlet system exchange merely compensates the self-interaction contribution in the Hartree
potential and is thus identical in TDHF theory and the x-only OPM.
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Figure 6: Single (left panel) and double (right panel) ionisation cross sections as functions of impact
energy for p̄-He collisions. Theory: TDKS calculations without and with response [51]; multi-cut FIM
[12], MEHC [82], AO1 [83], AO2 [29]; Experiments: open circles [84], closed circles [85].

our data are in good agreement with these calculations and appear to bridge the results
of the single-centred atomic orbital expansion and forced-impulse methods (denoted as
AO1, AO2, and multi-cut FIM) at medium energies with the multi-electron hidden cross-
ing (MEHC) calculation which is expected to yield the correct adiabatic limit. As our
model represents the no-correlation limit of the cross section correlation effects cannot
be important for single ionisation. Instead, response effects are crucial for energies below
100 keV. Figure 6 includes the comparison with the no-response approximation to illus-
trate this fact. Comparisons with other single-particle calculations show that the form
of the response potential is important and that only the accurate time-dependent x-only
model agrees with the two-electron theories [51].

Obviously, there is still a problem concerning the comparison with experiment below
30 keV. As in the case of the p̄-H system (cf. Sec. 3.1) the ASACUSA collaboration
will repeat and extend the single (and double) ionisation measurements in the low-energy
regime. Based on the results displayed in Fig. 6 the new experiments are expected to
correct the older ones and to fall off less steeply towards low energies.

In the case of double ionisation (right panel of Fig. 6) we observe again significant response
effects, but obviously our no-correlation limit calculations are not sufficient to explain the
data. The only calculation so far that describes these measurements is the multi-cut FIM
of [12], which includes static and dynamic correlation effects.

From the TDDFT viewpoint one might ask whether the x-only KS potential or the analysis
on the level of the IPM is responsible for the overestimation of the experimental data. Of
course, we cannot give a firm answer as long as we cannot include one of these aspects in
our calculations. Nevertheless, we believe that the analysis problem is the major one. As
explained in [19, 51] the binomial analysis of single and double ionisation predicts a fixed
relation between both observables which is violated in reality. At high impact energies
above EP ≈ 1 MeV this deficiency becomes apparent when one compares antiproton with

16



proton impact results. One finds that the single-ionisation yields coincide (as is expected
from perturbation theory), while the double-ionisation yields are different. This suggests
the following conclusion: Though multiple ionisation might be more accessible from the
IPM perspective than multiple capture in charge-asymmetric situations, ultimately, a
better approximation for the density dependence of all multiple-electron observables is
strongly desirable.

4.3 MULTI-CHARGED RECOIL ION PRODUCTION AND

CHARGE-STATE CORRELATED CROSS SECTIONS

Most of the results presented so far involved one-electron, or effective one-electron prob-
lems. The double-ionisation process in a true two-electron system is complicated, and
the no-correlation limit of TDDFT (i.e., the IPM) appears to be of limited use in this
case. Nevertheless, the situation becomes simpler when more electrons can play an ac-
tive role, particularly at intermediate and higher energies when the multi-electron events
can be considered to be statistical in nature. This is in contrast to what is expected
at very low energies, and also in most laser-atom interactions, when multiple ionisation
is the result of sequential electron removal. The validity of the IPM approach could be
inferred already from semiclassical calculations based on classical trajectories: many re-
sults of the N -particle trajectory calculations were reproduced with a model based on the
Vlasov equation [58], and numerous experimental findings for multi-electron processes in
heavy-ion collisions were explained successfully [34, 41]. However, these semiclassical cal-
culations are not adequate at low and intermediate collision energies, where a quantum
approach is required.
TDDFT with a direct interpretation of the KS orbitals is well-suited for the description of
direct multiple electron ionisation and capture events. Electronic correlations play a less
significant role as compared to the double-ionisation problem in a two-electron system, as
there are many pathways leading to a given final charge-state configuration on projectile
and target for a given impact parameter and collision energy. The difficulties encountered
in the no-correlation limit of TDDFT which were explained in the previous section will
arise in the N -electron context for the most violent collision events, i.e., for those channels
where (almost) all N electrons are strongly affected.
Much of our work in this area concentrated on neon targets [49, 50], where N = 10,
and the L-shell is active, furthermore, with oxygen targets we looked at an open-shell
system [43], and more recently we have concentrated on argon as a true multi-electron
system [56, 59]. First of all, one expects from DFT accurate net cross sections, which
can be calculated directly from the density. Recoil ion production is calculated using
binomial statistics based on the KS orbitals, and inclusive n-fold capture cross sections
can be obtained in an analogous fashion.
As an example of a cross section that depends on the time-evolved density alone we show
in Fig. 7 the net electron loss cross section for p̄-Ar, p-Ar, and He2+-Ar collisions [59].
The data cover a large range of collision energies: from projectile velocites smaller than
the characteristic velocities of outer-shell electrons all the way to the perturbative regime.
From a theoretical perspective the comparison emphasises two points: first, it shows
the effect of dynamical response: calculations with frozen target potentials (no-response
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Figure 7: Net electron loss cross sections as functions of impact energy for p̄-Ar, p-Ar (both left panel),
and He2+-Ar (right panel) collisions. Theory: TDKS calculations without and with target response [59];
also shown are results including response with an estimate of the increase due to autoionising transitions
within Ar(M, N). Experiments: p̄-Ar [86]; p-Ar [54]; He2+-Ar closed circles [87], closed triangles [88],
open squares [89].

model) systematically overestimate electron removal for impact velocities that are roughly
below twice the outer electron speeds; secondly, an estimate was made of the contribu-
tion of autoionising (AI) transitions, based on the single-particle excitation cross sections
included in the TDKS solutions. These estimates are most likely on the high side, as
multiple excitations are expected to be weaker than what is predicted from a binomial
analysis.

For the case of antiproton projectiles one has the smallest electron removal cross section
due to the absence of the charge-transfer channel. Nevertheless, taking 10−16 cm2 as a
standard for atomic physics cross sections we observe that the net ionisation cross section
is rather high on account of the fact that the Ar(M) shell (which is primarily involved
here) has eight electrons to offer for ionisation. Multiple ionisation is not expected to be
strong for a singly charged projectile, but it is certainly not negligible.

On the topic of comparison with experiment it should be noted that antiproton beams
at low and intermediate energies are difficult to manage, and therefore the cross section
is difficult to measure on an absolute scale. If the experimental data are confirmed, and
extended to lower energies (work in progress by the ASACUSA collaboration), then they
will represent an interesting challenge for TDDFT. This cross section is a measure for
how much of the single-electron density remains in the vicinity of the target nucleus. The
data are summed over impact parameters, and in the present calculation the net electron
loss probabilities are really calculated via the population of bound KS orbitals at the
end of the collision. An improvement over the present calculation would involve a more
detailed microscopic response, and one could obtain a lowered cross section. An improved
response model can be built along the lines of the recent p̄-He calculation [51].

For the proton impact case electron loss from the target is increased dramatically at low
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Figure 8: Net ionisation cross sections as functions of impact energy for p-Ar (left panel), and He2+-Ar
(right panel) collisions. Theory: TDKS calculations without and with target response [59]; also shown
are results including response with an estimate of the increase due to autoionising transitions within
Ar(M, N); dotted line: CDW-EIS calculation [60]. Experiments: p-Ar [90]; He2+-Ar closed circles [87],
closed triangles [88], open squares [89].

energies when compared to antiproton impact due to the presence of electron transfer
channels. Electron screening effects are stronger than for p̄ impact on an absolute scale,
but comparable on a relative scale (typically a 25% effect for impact velocities that match
or are below electron speeds in the Ar(M) shell). The theoretical data follow the observed
experimental trend of a rising cross section at the lowest energies shown. Charge-exchange
is nearly resonant for transfer from Ar(M) into H(1s), and it is this process at the level
of the single-particle KS equations that is responsible for this feature in the cross section.
Interestingly, response effects at the target do drive the system away from resonance
by increasing the Ar(M) shell binding energy during the collision. Nevertheless, their
influence on the cross section is not increasing at lower impact energies.

For the case where the charge of the impinging charge is doubled, one can notice a four-fold
increase in the electron removal cross section at the highest energies, which is expected
from perturbation theory. As the collision energy is reduced the increase in electron
removal efficiency becomes less. At 20–30 keV/amu one observes a maximum, and at
the lowest energy shown the cross section is slightly lower than for proton impact. At
the level of the TDKS equations one may be surprised over this behaviour: the He2+

projectile includes more states in its L-shell than H(1s) to accomodate charge transfer
from Ar(M), and it pulls with twice the charge. It is, however, only energetically quasi-
resonant, i.e., the asymmetry in the single-particle Hamiltonian is much more pronounced
in the He2+-Ar than in the p-Ar case.

Another inclusive cross section that follows directly from the asymptotic density in con-
figuration space is the net ionisation cross section, i.e., one considers only those parts of
the density that are neither close to the target nor to the projectile nuclei. In Fig. 8 we
show the results for the positive projectile charges ZP = 1, 2 (for antiprotons the result is
the same as shown in the previous figure). While comparing the ZP = ±1 data we notice
that they merge at high energies, where they also agree with the perturbative CDW-EIS
calculation of Ref. [60].
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Figure 9: Net capture cross sections as functions of impact energy for p-Ar (left panel), and He2+-Ar
(right panel) collisions. Theory: TDKS calculations without and with target response [59]; Experiments:
p-Ar [54, 91, 92, 93, 94, 95], cf. [56]; He2+-Ar closed circles [87], closed triangles [88].

The maximum in the result for ZP = 1 is somewhat sharper than in the antiproton case,
which is understandable given that at low energies the capture channel competes against
ionisation, thereby reducing the cross section for the latter process. At EP = 20− 40 keV
impact energy the calculations including AI corrections assume their maximum values
with a ratio of about 4:3 in favour of the ZP = 1 case. In the experiments there is an
indication that the maximum occurs at somewhat higher energies. The cross section ratio
at the maximum is in agreement with the calculation, but we note that the predicted
ionisation cross section is higher than experiment in both instances.

The situation is similar in the case of He2+ impact. We note that the cross section is about
2.5 times higher at maximum than in the proton impact case, and that the maximum
shifts to a higher collision energy which is in agreement with experiment. The calculation
overestimates the experiment (particularly when the more recent data are assumed to be
more accurate). This could mean that an improved screening model with more flexibility
than just a modified spherically symmetric target potential is needed.

Net capture cross sections are shown for completeness in Fig. 9. The calculations with
target response show remarkable agreement with the experiments over a wide range of
energies. For the proton impact case we have recently demonstrated that the TDKS
calculation is superior to model calculations [61] for both net capture and for capture
to the H(K, L, M) shells [56]. The different features of the net capture cross sections at
low energies together with their explanations have been discussed in the context of the
net electron removal cross sections. It is difficult to imagine how a TDDFT calculation
not based on the KS scheme, but working directly with the single-particle density and
gradients thereof would cope with this problem.

One might conclude then that apart from the minor problems of overestimating the ion-
isation cross sections all is well with the TDKS calculations based on the exchange-only
OPM. Presumably a fine-tuning of the screening effects might resolve the existing discrep-
ances at low to intermediate energies (where response becomes more important). However,
as will be made clear in the next comparisons, some issues remain with the interpretation
of the results. The high amounts of charge transfer observed in the calculations at low
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energies (and shown to agree with experiment) imply that multiple electron transfer does
play a substantial role. Therefore, it is worth investigating how the calculations distribute
the net probabilities over n-particle channels.
From a theoretical perspective one now faces the following dilemma: In stationary DFT
the KS orbitals represent a construct to calculate the single-particle density. In TDDFT
one can maintain the same strategy as long as one confines oneself to the computation
of net cross sections (which can be computed from the time-evolved density alone). In
order to compute q-fold electron loss (or ionisaton, or capture) one can employ binomial
statistics which follows from an IPM interpretation of the single-particle density. Within
the TDKS scheme it is natural to assume that the orbitals do not just serve as a means
to obtain the single-particle density, but that the orbitals in some sense approximate
the orbitals of TDHF theory (in reality, in the stationary problem they are closer to the
Dyson orbitals [62], and it remains to be investigated what this implies for the time-
dependent case).
As outlined in the theory section a straightforward binomial analysis of the impact-
parameter-dependent single-particle probabilities leads to predictions of unrealistic mul-
tiple electron transfers. In strongly charge-asymmetric systems one faces the problem
that a purely statistical evaluation leads to naive predictions for negative ion formation
(multiple capture is possible for our ZP = 1, 2 projectiles due to the availability of N = 18
electrons in the case of argon targets). An alternative which avoids this problem is the
product-of-binomials analysis [43]. This analysis has the tendency to distribute the net
probability in such a way that the (q = 1)-fold processes are favoured as compared to the
higher multiplicities in comparison with binomial analysis. For a detailed comparison of
the two methods of evaluating q-fold electron removal in the He2+-Ne system we refer the
reader to Ref. [49].

Figure 10: q-fold electron loss cross sections as functions of impact energy for p-Ar (left panel),
and He2+-Ar (right panel) collisions. Theory: TDKS calculations with target response and products-of-
binomials analysis [59]; Experiments: p-Ar [52, 96, 97], cf. [59]; He2+-Ar [88, 97].

In Fig. 10 we show q-fold electron removal cross sections with q = 1, . . . , 4 and q = 1, . . . , 5
from top to bottom for p-Ar and He2+-Ar, respectively. In the case of proton impact one
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obtains reasonable agreement at energies above 15 keV for the first three charge states.
At the higher collision energies the experimental cross sections for q = 3, 4 are dominated
apparently by AI events: removal of two electrons from the argon atom at high proton
impact energies is likely to involve an L-shell electron which leads to an L − M Auger
event. It is remarkable that the q = 4 channel predicted on the basis of the IPM to
be relatively strong at intermediate energies is completely absent experimentally. At
high energies experiment appears to indicate an appreciable q = 4 channel fed by Auger
cascades. Preliminary results based on a statistical evaluation of these L − M Auger
events confirm this interpretation.

For the case of bare helium projectiles we find that the IPM calculation agrees with
experiment for q = 1, . . . , 4, while q = 5 is completely off. At high energies Ar(q = 3)
production is now dominated by direct ionisation rather than Auger cascades. At energies
below 20 keV/amu there is a marked disagreement between calculation and experiment
in the q = 3, 4 channels which — if true — would mean that a strong violation of IPM
behaviour is at work here.

These recoil ion production cross sections demonstrate the following general trend. De-
pending on the strength of the projectile interaction q = 1, . . . , q0 electrons can be removed
in a direct statistical fashion. The value of q0 depends on the number of electrons in the
outermost shells available for ‘easy’ removal, and on the projectile charge ZP . Experi-
mentally we observe q0 = 3, 4 for the two cases ZP = 1, 2, i.e., the cut-off for independent
statistically related electron removal events occurs well before the Ar(M) shell runs out
of electrons. This cannot be described by statistical density-dependent or shell-specific
treatments such as the standard binomial and products-of-binomials analyses.

We conclude this section with a discussion of charge-state correlated cross sections. Prob-
abilities for simultaneous capture of k electrons and ionisation of l electrons to produce a
(q = k+l)-fold charged recoil ion can be calculated either by separating space into three re-
gions and subdividing the single-particle density appropriately (trinomial analysis), or by
the products-of-binomials analysis Eq. (21). For the charge-asymmetric situation (ZP = 2
vs ZT = 10) the latter analysis is far superior, especially at lower collision energies.

In Fig. 11 we display cross sections for the He2+-Ne system which correspond to direct
multiple ionisation (k = 0), single capture with multiple ionisation (k = 1) and double
capture with multiple ionisation (k = 2). The q-fold recoil ion production cross sections
are reproduced for q = 1, . . . , 3 quite well, and for q = 4 the shape is obtained correctly,
but the cross section is too high by about a factor of four at all energies [49]. Therefore,
only cross sections for up to q0 = 4 are shown.

The comparison of theoretical and experimental cross sections confirms that to a large
extent the various channels are indeed correlated statistically. The pure ionisation chan-
nels are insignificant at the low energies; the experimental data rise more rapidly than
theory. From 50 keV/amu on the agreement is quite good, except that the l = 4 channel
exhibits a pronounced maximum, while the experimental data appear to be flat.

For the case of single capture we notice a good description of pure capture at all energies,
but a deficiency of the theory in the (k = 1, l = 1) channel below 100 keV/amu. It is
remarkable that agreement is found for the (k = 1, l = 2) channel. For triple ionisation
accompanying single capture the theory predicts the shape of the cross section, but is too
high by a factor of four.
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Figure 11: Cross sections for simultaneous k-fold capture and l-fold ionisation as functions of impact
energy for He2+-Ne collisions. Left panel: k = 0, l = 1, . . . , 4; middle panel: k = 1, l = 0, . . . , 3; right
panel: k = 2, l = 0, . . . , 2. Theory: TDKS calculations with target response and products-of-binomials
analysis [49]; Experiments: Ref. [88].

In double capture plus multiple ionisation we overestimate the pure double capture at
low energies by about 50%. It is possible that this overestimation is on account of the
fact that this process really feeds the (k = 1, l = 1) channel, i.e., that the separation of
projectile bound and continuum states is adequate for single-electron processes, but not
when two electrons are involved. The σ21 cross section overestimates the data by a factor
of two, while σ22 is too high by an order of magnitude. Nevertheless, the shape of σ22(EP)
is correct.

This comparison indicates that the prediction of detailed charge-state correlated cross
sections is somewhat less reliable than the estimation of the q-fold inclusive processes,
in that there can be individual channels which deviate from the statistical distribution
employed by the IPM.

Based on these results one might conclude that as long as the single-particle TDKS equa-
tions are capable of separating correctly the capture and ionisation probabilities, one can
expect the overall picture of the σkl cross sections to be in agreement with experiment
for q = 1, . . . , q0. We find, however, both confirmation of this conjecture and systematic
disagreement in the C4+-Ne system [50] for which q0 = 5. At high energies (above 200
keV/amu) the distribution of q-fold recoil production over multiple capture and ionisation
events is described correctly. However, at lower energies the theory favours single cap-
ture accompanied by ionisation over pure ionisation in comparison to experimental data
(which are, however, for the F4+-Ne system). Further investigations of the conjecture are
definitely needed.
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5 SUMMARY

One can summarize this review in the following way. We have demonstrated that the
BGM technique for propagating single-electron orbitals represents a reliable method for
the calculation of capture and ionisation in intermediate-energy ion-atom and ion-ion
collisions with a single active electron.

Then, we have shown applications of the BGM technique to solve the TDKS equations of
DFT for low-charge ions colliding with He, O, Ne, and Ar atoms. We have demonstrated
the importance of taking into account dynamic response at the target in order to obtain
a reasonably accurate time-dependent electron density n(~r, t).

We have shown that global quantities obtainable directly from the density agree with
experimental data. These global quantities are the net ionisation, net capture, and net
electron loss cross sections. Furthermore we have illustrated the results for q−fold elec-
tron processes. These rely on a statistical interpretation of the calculated density. For
the asymmetric collision systems considered in this review, i.e., for systems where the
projectile charge is substantially less than the number of electrons on the target the strict
no-correlation limit of DFT (multinomial probability distributions) was found to be less
reliable than the products-of-binomials analysis. The latter analysis was also applied for
the calculation of charge-state-correlated cross sections.

We have found that for a given system involving N target electrons and a projectile
charge ZP total electron multiplicities of q = 1, . . . , q0 were described well within the IPM
framework. The value of q0 depends on N and to a lesser degree on ZP . Sometimes, the
cross sections for the total electron multiplicity q0 were reproduced correctly in shape,
but were overestimated in magnitude. In the case of N = 2 only a sophisticated target
response model involving several multipolarities of the density was able to give reasonable
results for q0 = 2.

We have mentioned, but not elaborated on applications that require a complete interpre-
tation of the TDKS orbitals in the sense of TDHF theory, i.e., probability analysis of the
TDKS calculations at the level of the density matrix. This becomes particularly important
for collisions involving electrons on both projectile and target nuclei (cf. Sec. 6.3).

One remaining goal in this programme to investigate the usefulness of the TDDFT ap-
proach for ion-atom collisions involves the study of highly charged projectile ions imping-
ing on target atoms involving large numbers of electrons (Ar, Kr, Xe). It will be interesting
to see whether the highest multiplicity described successfully by the no-correlation limit
of TDDFT, i.e., q0, will exceed the number of electrons available in the outermost shell.
This will represent an even more stringent test of the TDKS equations as a method to
provide an accurate electron density than what has been demonstrated so far.

6 EXTENSIONS AND OUTLOOK

Finally, we would like to sketch a few related topics and extensions of our approach that
we have considered and which we are planning to elaborate in the future.
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6.1 EFFECTIVE SCALING OF THE NET ELECTRON LOSS
CROSS SECTION

Within the target-response approximation [cf. Eq. (26)] we obtained a rather surprising
results when we plotted the net electron removal cross section σ+ for neon target atoms
divided by the charge of the projectile ZP as a function of the projectile energy EP divided
by ZP for projectile charges ranging from ZP = 2, . . . , 8 [9, 50]: we found an almost
universal curve over a considerable range of reduced energies from some 10 keV/ZP to a
few 100 keV/ZP . This was unexpected particularly for moderate values of EP /ZP , since
the actual probabilities as a function of impact parameter are rather different, and only
the area under the curve bP+ turned out to be approximately universal. The scaling
behaviour was found only in the TDKS calculations with response, but not in the no-
response calculations.
Unfortunately, the available experimental data are not sufficiently accurate to prove or
disprove the predicted scaling behaviour, so that new experiments with accurate absolute
normalisation are needed. From the theoretical viewpoint it might also be interesting to
check whether similar scaling behaviours can be found for other targets, e.g., for argon
atoms.

6.2 TARGET EXCITATION PROCESSES

The works discussed in the previous sections dealt with ionisation and capture processes.
Target excitation was mentioned in Sec. 4.3 only in connection with possible autoionising
(AI) multiply-excited states which contribute to electron removal. However, the inves-
tigation of excitation processes is also of interest in its own right, both for the general
understanding of the (many-) electron dynamics in atomic collisions and for applications,
e.g, in atmospheric science [63]. We have carried out detailed calculations for excitation
cross sections in p-O collisions [43], which required rather sophisticated analyses based
on the LS coupling scheme. We found agreement with available experimental data de-
rived from fluorescence measurements within a factor of two in all cases with one notable
exception: for the excitation of the O(2s 2p5 3P ) state theory and experiment differed
by an order of magnitude. We believe that in this case electron correlation effects are
crucial to describe the transition. It is desirable to extend these calculations (and mea-
surements) to other systems in order to clarify the role of electron correlation effects for
ion-induced excitation processes. This would also be helpful for more realistic estimates
of AI contributions to electron removal.

6.3 PROJECTILES CARRYING ELECTRONS

Very often in a scattering experiment some electrons are bound to the target and some
are bound to the projectile in the entrance channel. If the binding energies of both ’kinds’
of electrons are comparable they can get excited, ionised or transferred very much on an
equal footing, which implies that one has to take all possible transitions into account at the
same time. In recent works we have addressed the He+-Ne collision system as a prototype
example. We have shown that one can describe many cross sections successfully from a
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simplified viewpoint based on different single-particle calculations for the initial target
and projectile electrons [64, 65, 66]. The crucial point is a sensible combination of the
indiviual calculations, in particular, an accurate correction for the lack of orthogonality of
propagated projectile and target orbitals and an analysis that respects the antisymmetry
of the many-electron state. These studies will be pursued further to more complicated
situations involving projectiles with more than one active electron.

6.4 LASER-ASSISTED COLLISIONS

Very recently an old question gained new momentum: Is it possible to embed an atomic
collision experiment in an intense laser field? Such experiments appear to be within
reach with present-day technology and are considered in a few laboratories. Several the-
ory groups have started to investigate laser-assisted ion-atom collisions on the basis of
advanced numerical techniques. The BGM appears to be a suitable tool for such in-
vestigations, and a pilot study on laser-assisted electron transfer indicated that capture
probabilities can be considerably enhanced or reduced depending on the temporal syn-
chronisation between projectile and laser fields [67]. These studies will be continued as
they may open the door to ultrafast control of electronic motion on the attosecond time
scale.
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[19] H.J. Lüdde: Time-Dependent Density Functional Theory in Atomic Collisions. In:
Many-Particle Quantum Dynamics in Atomic and Molecular Fragmentation, ed. by
J. Ullrich and V.P. Shevelko (Springer, Berlin, Heidelberg, New York 2003)

[20] R.M. Dreizler and E.K.U. Gross: Density Functional Theory (Springer, Berlin, Hei-
delberg, New York 1990)

[21] E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

[22] J.D. Talman and W.F. Shadwick, Phys. Rev. A 14, 36 (1976)

[23] E. Engel and R.M. Dreizler, J. Comp. Chem. 20, 31 (1999)

[24] D.R. Schultz, M.R. Strayer, and J.C. Wells, Phys. Rev. Lett. 82, 3976 (1999)

[25] D.C. Ionescu and A. Belkacem, Phys. Scr. T80, 128 (1999)

[26] A. Kolakowska, M. Pindzola, F. Robicheaux, D.R. Schultz, and J.C. Wells, Phys.
Rev. A 58, 2872 (1998); A. Kolakowska, M. Pindzola, and D.R. Schultz, Phys. Rev.
A 59, 3588 (1999)

[27] B. Pons, Phys. Rev. A 63, 012704 (2001); ibid. 64, 019904 (2001)

[28] K. Sakimoto, J. Phys. B 33, 5165 (2000)

[29] A. Igarashi, S. Nakazaki, and A. Ohsaki, Phys. Rev. A 61, 062712 (2000)

[30] X.M. Tong, D. Kato, T. Watanabe, and S. Ohtani, Phys. Rev. A 62, 052701 (2000)

[31] J. Fu, M.J. Fitzpatrick, J.F. Reading, and R. Gayet, J. Phys. B 34, 15 (2001); E.Y.
Sidky, C. Illescas, and C.D. Lin, Phys. Rev. Lett. 85, 1634 (2000); N. Toshima,
Phys. Rev. A 59, 1981 (1999)

[32] E.A. Solov’ev, Sov. Phys. Usp. 32, 228 (1989); M. Pieksma and S.Y. Ovchinnikov,
J. Phys. B 27, 4573 (1994)

[33] C.L. Cocke and R.E. Olson, Phys. Rep. 205, 163 (1991)

[34] M. Horbatsch, Phys. Rev. A 49, 4556 (1994)

[35] C. Illescas and A. Riera, Phys. Rev. A 60, 4546 (1999)

28
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