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1 Time-Dependent Density Functional
Theory in Atomic Collisions

H.J. Liidde

1.1 Introduction

Scattering processes leading to excitation or fragmentation of atomic or molec-
ular systems are a source of information on various physical effects associated
with the mutual Coulomb interaction of such many-particle systems. This
Chapter focusses on the discussion of a quantum mechanical system (the
electrons of the target) influenced by a classical environment (the projectile)
that provides the energy which disturbs the electronic system [1]. The classi-
cal environment can, for instance, be realized by an intense laser field or an
ion beam which imposes its time-dependence on the electronic subsystem and
defines a typical time scale for the scattering process — femtoseconds for an
electronic system exposed to a laser beam and attoseconds for heavy-particle
collisions.

From a theoretical point of view it is the time-dependent many-electron
problem which has to be solved for different external potentials represent-
ing the interaction with the classical environment. In practice one often has
to be content with a single-particle approximation providing effective single-
particle equations that can be solved for any active electron at the prize,
however, that the true two-particle character of the electron-electron inter-
action has to be neglected.

It is the power of Density Functional Theory (DFT) to provide a math-
matical framework that allows to exactly map the many-electron system onto
a set of effective single-particle equations. This Chapter gives an outline of the
basic concepts behind time-dependent DFT based on a series of review arti-
cles [2—4] which document the activity in this field. For a comprehensive intro-
duction to stationary DFT the monograph of R. Dreizler and E.K.U. Gross
is specially recommended [5].

Although there is hardly an alternative to time-dependent DFT for a the-
oretical investigation of systems with many active electrons it is not always
clear how to extract observables of the system to establish contact with ex-
perimental results. The second part of this article addresses this problem and
gives an idea of its complexity.



2 H.J. Lidde

A few applications of DFT for typical collisional situations are summa-
rized at the end of this Chapter. Atomic units are used.

1.2 Basic Concepts of Time-Dependent
Density-Functional Theory

Starting point for the theoretical description of a non-relativistic electronic
system is the time-dependent Schrédinger equation (TDSE)

10,W(t) = H)¥(t), (1.1)

which determines the propagation in time of the N-particle system evolving
from its initial state

T(ty) = Ty . (1.2)

Although ¥(t) fully describes the electronic system it is of course not ob-
servable. In a typical collision problem one usually measures probabilities of
finding some of the electrons in a given state or at a certain place in config-
uration space. These inclusive probabilities [6] can be expressed in terms of
the g-particle density [7]

N
Y (x1,...2y,t) = (q)/d4xq+1...d4mN @ (x1,...24,1)%, (1.3)

where z; = (r, 5) denotes coordinates and spin of the j-th electron and d*z;
indicates summation over spin and integration over space coordinates, re-
spectively. With the definition (1.3) v?d3ry...d3r, describes the inclusive
probability of finding ¢ electrons at given positions in configuration space,
while the remaining N — ¢ electrons are not detected explicitly. As a special
case one obtains for ¢ = 1 the spin-free one-particle density

n(r,t) = Z’yl(r,s,t) , (1.4)
which is the key for the understanding of DFT.

The total hamiltonian which enters the TDSE (1.1)

Hit)=T+W +V(t) (1.5)

includes the kinetic energy, the mutual Coulomb repulsion between the elec-
trons



1 TD Density Functional Theory 3

and the external potential

N
= Z ’U(’I‘j,t), (]‘7)
=1

which characterizes the geometry as well as the explicit time-dependence of
the particular quantum system. This decomposition of the hamiltonian into a
universal, time-independent part (1.6) and a system-specific time-dependent
external potential is a second important ingredience for the conceptual un-
derstanding of DFT.

Let us, thus, define a map F : v(r,t) — ¥(t) by solving the TDSE for
different external potentials but common initial state ¥y. As the one-particle
density is uniquely determined by the time-dependent many-particle state
W (t) this obviously defines a second map G : v(r,t) = n(r,t). The foundation
of DFT involves the proof, that the map G is invertible, i.e. ¥(¢) can be
obtained as a functional of the one-particle density ¥(t) = FG 'n(r,t). As
a consequence any observable which can be written as an expectation value
(@ (t)|O(t)|#(t)) of a hermitian operator would then be uniquely determined
by n(r,t).

More precisely the conditions under which G is a 1-1 map between the
external potential and the one-particle density are formulated by the Runge-
Gross theorem [8]:

e For every single-particle potential v(r,t) which can be expanded into
a Taylor series with respect to time around ¢ = t¢ there exists a map
G : v(r,t) = n(r,t) by solving the TDSE with a fixed initial state ¥y. This
map can be inverted up to an additive merely time-dependent function
in the potential.

At this point a few remarks might be appropriate: (i) As the invertibility of
the map between potentials and densities can only be shown with respect
to a given initial state ¥y, the solution of the TDSE rigorously depends on
the density and the initial state. Consequently any observable of the system
is a functional of n and W. (ii) The potential as a functional of n is only
determined up to a merely time-dependent function. This corresponds to an
ambiguity in ¥ (t) up to a time-dependent phase factor, which cancels out for
any observable characterized by an operator that is free of time derivatives.
(iii) The Runge-Gross theorem can be applied to any system characterized
by a given interaction W in particular for W = 0. This fact is used in the
subsequent section where a set of effective one-particle Schrodinger equations
yielding the exact one-particle density is derived.

1.3 Time-Dependent Kohn-Sham Equations

The gist of DFT is the determination of the exact one-particle density n
from which any many-particle observable can be derived. Let us assume we
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know this density and can calculate it from a set of N ficticious orbitals
{¢j,7=1,...N}

N
n(r,t) =3 I6,. (18)

The ansatz (1.8) suggests that the orbitals fulfil a single-particle Schrodinger
equation of the form

2

2

iat¢j(r7t) = ( +UKS(T7t)) ¢](’l",t) Jj = 17"'N7 (19)
where the existence of the single-particle potential vkg is assumed. (This is
discussed in the literature under the topic v-representability [9]). If this po-
tential exists the Runge-Gross theorem guarantees its uniqueness, i.e. there is
up to an additive merely time-dependent function exactly one single-particle
potential which together with the time-dependent Kohn-Sham (KS) equa-
tions (1.9) reproduces the ezact one-particle density n. Essentially, the KS
equations represent an exact mapping of the N-electron problem onto a set
of N single-particle problems. The crucial point is, however, that one does
not know the KS potential explicitly.

1.3.1 Kohn-Sham Potential

Nevertheless a few general properties of the KS potential can be established:
(i) the KS potential is local in space in contrast to the exchange term in
Hartree-Fock theory, (ii) by virtue of the Runge-Gross theorem the KS po-
tential must be a unique functional of the exact density for a given initial
state Wy and for a given KS determinant &, = det(é1,..¢n)/VN!. The lat-
ter condition can be largely simplified if we assume that the time-dependent
electronic system evolves from a non-degenerate ground state of the initially
undisturbed system which via stationary DFT is fully determined by its cor-
responding density no (7). In this case the KS potential is a unique functional
of the density alone

vks[n, Yo, Po] = vks[n](r,t) . (1.10)

Based on the experience with single-particle pictures one usually splits the
KS potential in its classical parts — the external (Coulomb) interaction v(r,t)
and the Hartree potential vg which includes the screening of the external
potential due to the electrons — and a genuine quantum part vy the exchange-
correlation potential

vsn](r.1) = v(r, ) + vl (r, ) + vscln](r, 1) (L11)
il = [ 5
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However, as nothing is known about the exchange-correlation potential so far,
one needs an additional property of the many-particle system to determine
the KS potential explicitly.

The solution of the TDSE corresponds to a stationary point of the action
integral

t .
A= dt (T (¢)|i0; — H(t)|¥ (1)), (1.12)
to

which essentially should be a functional of n as ¥ is. The TDSE is then
obtained by variation of 4 with respect to ¥. Can one therefore conclude
that the exact one-particle density is a stationary point of the action integral
as well, thus 6 A/dn(r,t) =07

This is obviously not the case, as the Runge-Gross theorem predicts the
functional ¥[n] only up to an arbitrary time phase. Because of the time-
derivative in the Schrédinger operator i0; — H (t) the action (1.12) is in fact
a functional of n and the undetermined phase (for a detailed discussion on
appropriate action functionals see [4] and [10]). Consequently equation (1.12)
is not useful as an additional source for the derivation of the KS potential.

A more pragmatic approach rests on the assumption that the time-depen-
dence of the KS potential is only due to the time-dependence of the density,
where the functional dependence on the density is taken from stationary
DFT. This is called the adiabatic approximation. The exchange-correlation
(xc) potential for a nondegenerate ground state is related to the corresponding
energy on the basis of the Rayleigh-Ritz variational principle

EX
trefnal(r) = 2251 (113)
Ew=T-T,+W — Eq,

where 7" and W are the expectation values of the interacting system, T
denotes the kinetic energy, and Ey the Hartree energy of the KS system.
The functional derivative (1.13) yields the functional dependence of the xc-
potential on ng(r) for any particular approximation of the energy functional
E.. Replacement of the ground state density by n(r,t) is the essential idea
of the adiabatic approximation.

The Local-Density Approximation

The most convenient ansatz for the xc-energy is based on the assumption that
the energy functional can be locally approximated by that of the homogeneous
electron gas. This local-density approxzimation (LDA) yields for the exchange
part a simple analytic expression
1
vEPA = ——(3x2n(r, 1))V /3, (1.14)
T

X
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while the correlation part is given in terms of a parametrisation [11]. The LDA
(or ALDA for adiabatic LDA) should give reasonable results for systems in
which the density is slowly varying both in space and time. However, it is im-
portant to notice that the exchange potential (1.14) decreases exponentially
giving rise to an asymptotically incorrect compensation of the self-energy
contained in the Hartree term. In atomic physics this can be cured by forcing
the correct asymptotic decrease of the KS potential [12].

The Optimized-Potential Method

The problems associated with the self-energy effects can be solved more sys-
tematically on the basis of orbital dependent density functionals. As the KS
orbitals are also functionals of n one can express the xc-potential as a func-
tional of the KS orbitals. Using the chain rule for functional differentiation
one obtains

5Exc

(Sva 3 (r") 0 Exc[o]
3./ 3.1 k
/ d3r / dr Z Surcs (") 5% () +cc,

'ch("') = (115)

with cc indicating the complex conjugate of the preceding expression. For the
x-only term the exact energy functional is known

L fan /d3,25m%,ms[ M) G o) o

r=r
k=1

which together with (1.15) yields an integral equation for the local exchange
part of the KS potential. This scheme, originally introduced by Talman and
Shadwick [13] as optimized (effective) potential method (OEP — OPM) has
shown to be very successful in ground state DFT [14] as well as in time-
dependent systems. The local character of the x-potential allows for a com-
pensation of the self-energy not only for the occupied ground state orbitals —
as it is the case in Hartree-Fock theory — but also for the virtual orbitals
which is of particular interest in time-dependent systems. First attempts to
include correlation [15] are very promising for ground state problems but are
yet too complex for time-dependent systems.

1.3.2 Numerical Solution of the Kohn-Sham Equations

The numerical solution of the time-dependent KS equations (1.9) is quite in-
volved. It is the long range of the Coulomb interaction which requires (i) sta-
ble algorithms as one has to propagate atomic systems over large time scales
and (ii) high accuracy to adequately account for the enormeous delocaliza-
tion of the electronic density. It is, thus, not surprising that the development
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of appropriate numerical methods is well represented in the literature. Two
reviews on time-dependent methods for quantum-dynamics [16] document
the lively activity in this field over the last two decades. More recent devel-
opments of particular interest for ion-atom collisions include (i) lattice tech-
niques discretising the TDSE in configuration space [17], momentum space
[18] or a combination thereof based on FFT algorithms [19], (ii) expansion
methods relying on single-center [20] or two-center [21] basis sets, (iii) the
hidden crossing method [22] valid for adiabatic collisions, and with a broad
spectrum of applications (iv) the classical trajectory Monte Carlo method
[23] which simulates the electronic system in terms of a statistical ensemble
of classical point charges.

A little different in its philosophy is the Basis Generator Method (BGM)
[24] which allows to optimize the finite solution space in the sense that the
individual basis functions dynamically adapt themselves to the momentary
structure of the KS orbitals. In its present implementation [25] the BGM
proves to be successful for collisions between ions and atoms [26], or ions and
small molecules [27], and, very recently, for laser assisted atomic collisions
[28].

1.4 Extraction of Observables

The solution of the KS equations (1.9) is the one-particle density which de-
scribes the time propagation of the dynamical system to its final state. As the
many-particle wavefunction is a functional of n any observable of the system
must be a functional of the one-particle density as well. This is, however,
a critical point in the application of time-dependent DFT as the functional
dependence on n is only known for a few observables.

1.4.1 Exact Functionals

One observable which is accessible in all kinds of atomic scattering systems ir-
respective of the complex individual collision processes involved is the energy-
loss of the system

Et)—& = t ) at' . (1.17)

to

If one calculates the time-derivative of the total energy taking into account
that only the external potential is explicitly time-dependent [4,29]

!
E—E(

= (W|%V(t)|¢) :/n(r,t)ij(r,t) d°r, (1.18)

PA©|Y) = (@15 [, 7))
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one obtains the energy-loss as an explicit functional of the density

—& = /t:/ n(r,t)o(r,t)d3rdt’. (1.19)

For ¢ — oo the energy-loss depends on the control parameters of the scatter-
ing system: (i) (b, E) impact parameter and energy of the impinging ion or
(i) (I,w) intensity and colour of the laser.

The expectation value of the total momentum of a dynamical system can
either be written as a functional of the KS current

P(t) = (Z|P|P) = - Z (@|V; )
j=1
= % (Vv-V') n(r,r'7t)|T:,, d3r = /j(r,t) a3r, (1.20)
with
1 N
irmh =5 > A5, )V 8;(r, 1) = ¢5(r, V] (r, 1)} (1.21)
j=1

or with the aid of the continuity equation
On(r,t) = =Vj(r,t) (1.22)

and Green'’s theorem as a functional of the time derivative of the KS density

4]
P(t) :/rh(r,t) &3 = —/r(Vj(r,t))d3r:/j(r,t) &Er. (1.23)

In the case of a heavy-particle collision the longitudinal and transversal com-
ponents of the total momentum are experimentally observable

Py(t) = / 2, 1) dr
) =/\/x2+y2h(r,t)d3r, (1.24)

allowing the determination of the scattering angle (k; denotes the momentum
of the incoming projectile)

PL
P+ ki ’
if the Coulomb repulsion between the nuclei is negligible.
Another set of global observables of the scattering system that can be
expressed as functionals of the density under certain conditions are net-

probabilities corresponding to the average number of electrons in a final state.
If for a heavy-ion collision the density

n(r,t) = nr(r,t) + np(r,t) + ni(r,t) (1.26)

tanf ~ 0 = (1.25)
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can be split into finite regions around the target (T), the projectile (P), and
an infinite complement (I) in such a way that the total volume (V=T+P+I)
of the one-particle configuration space does not contain interference terms
between these parts the particle number can be written as

N:/Vn(r,t)d3r:/Tn(r,t)d3r+/Pn(r,t)d3r+/n(r,t)d3r

I
— r}let +P£et +PInet‘ (1‘27)

Pret corresponds to the average number of electrons which can be detected
within the subvolume x. For the case of an initially neutral target and bare
projectile these particle numbers can be interpreted as net-ionization, net-
capture, and net-loss if one defines the electron loss probability

Pt = PR 4 PPt = N — Pp°t. (1.28)

which in this situation corresponds to the average charge of the target.

1.4.2 Approximate Functionals

The situation becomes more involved if one is interested in less global infor-
mation about the scattering system. In equation (1.3) the g-particle density
was introduced as a measure for the inclusive probability of finding q elec-
trons at given positions in space while the remaining N — ¢ electrons are
somewhere. Formally these g-particle densities are related

+1
YU x1,. .. zq,t) = T

~ N-—gq / d'zgp1 Y (@1, - By, ) (1.29)

which can be readily seen inserting the definition (1.3). The g-particle densi-
ties are normalized

N
dzy ... d'z, (g, .. xy,t) = ( > ) (1.30)

Va q

where V7 indicates that all ¢ electron coordinates run over the entire volume
V. If one splits the volume in which the many-particle state is analyzed into
subvolumes — e.g. V=T+I for a two-electron system which can either be
excited or ionized by a laser beam — the normalization integral yields [30]

V= [ a0
V2 T2 TI 12

= PT2 + Pr1 + Plz . (1.31)
The probabilities in this case correspond to the sum over elastic scattering,

single and double excitation (Pr2), single ionization with possible simultane-
ous excitation (Pry), and double ionization (Pp2), respectively. The extension
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to the more involved situation of a heavy-particle collision with a N-electron
target is straightforward

N v
N\ (v
VN 7 (T+P+I)N v M TN—vpv—uln ( )

v=0 pu=0

where the terms of the sum correspond to the probability of finding simulta-
neously IV — v electrons with the target, v — u electrons with the projectile,
and p electrons ionized. It is interesting to notice that the integration over
the inifinite volume I can always be reduced to an integration over T or T
and P. This is demonstrated for the simplest case (1.31), where the single
ionization probability can be expressed as

PT1=2/72=2/ 72=/7—2/ s
TI T(V-T) T T2
—ppt-z [ (1.33)
T2

using equation (1.29). Together with the knowledge of the initial state this
type of probability allows to analyze the final charge state of the collision
system. There is obviously a tremendous number of simultaneous processes
that can be observed in a coincident experiment if N electrons become ac-
tivated by an external time-dependent field (see the Appendix for a list of
examples).

However, these inclusive probabilities depend on the g¢-particle density
and there is not much known about the relation between the g-particle and
one-particle density on a mathematically exact level. One, thus, has to evalu-
ate these probabilities within the independent particle picture [6], where the
g-particle density is represented by a ¢ x ¢ determinant of the one-particle
density matrix. Although this approach corresponds to neglecting the corre-
lation in the final state it presents a way to calculate any kind of inclusive
probability [31]. Nevertheless it is this part of the theory which has to be
developed in order to make the power of time-dependent DFT fully available
for the discussion of collisional systems.

1.5 Applications

1.5.1 Many-Electron Atoms in Strong Laser Fields

Atoms in strong laser fields have received increasing attention with the advent
of strong femtosecond lasers [32]. New phenomena have been investigated in
connection with multiphoton ionization: above threshold ionization, the sta-
bilization of atoms with high laser intensity and frequency and the formation
of harmonic spectra.
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The external potential (1.7) for an atom in a linear polarized laser puls
with shape function f(¢) is

Q:

v(r,t) = -

+ Eof(t) sin(wot)z . (1.34)
Solutions of the time-dependent KS equations (1.9) are compared within the
ALDA and OPM approaches to the KS potential, where the numerical proce-
dure relies on a finite difference method in cylindrical coordinates employing
a Crank-Nicholson algorithm for the time integration [33]. Typical observ-
ables of the system are multiple ionization and the harmonic spectrum. The
latter can be formulated as an exact functional of n by calculating the Fourier
transform of the induced dipole moment

d(t) = / on(r,t) dr . (1.35)

Consequently comparison with experiment is very promising. Multiple ion-
ization can however only be calculated within the x-only approach of the
g-particle density which for an initial He ground state exposed to a laser
pulse yields according to (1.31)

P =2p(1-p)
P2 = (1-p)°
p= %/Fn(r,t — 00) d®r. (1.36)

There is obviously a problem with the x-only approximation (1.36)

P =2y/P:(1-/P2), (1.37)

as the relation between P and P2 [30] always predicts a maximum of 0.5 for
the single-ionization while double-ionization can become much larger.

As mentioned above this is so far the bottle-neck for applications based
on time-dependent DFT: no matter how exact the density of the propagating
system can be obtained [34] one depends upon approximate functionals for
the evaluation of some of the observables.

1.5.2 Ion-Atom Collisions Involving Many Active Electrons

Modern experimental techniques like COLTRIMS (COLd Target Recoil Ion
Momentum Spectroscopy) allow to investigate atomic collisions with high
accuracy on a very detailed level. A considerable amount of theoretically un-
explained experimental data have been collected over the past ten years [35].
In contrast to the experimental situation it was only very recently that a non-
perturbative description of atomic collisions involving many active electrons
became feasible (for a collection of references see [36]). With increasing num-
ber of electrons there is hardly an alternative to time-dependent DFT if one
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is tackling the many-particle problem in a systematic way. In this context it
appears to be useful to investigate the influence of different approximations of
the exact KS hamiltonian on effects associated with the electronic interaction
during the collision process.

For that purpose the KS potential (1.11) is rewritten

UKS[n](TJ t) = U(Ta t) + Uee[n](Tat) ) (138)
where vee which includes the Hartree- and xc-potentials is decomposed into
Vee[n] (7, 1) = Vee[n0] (1) + dVee[n](T, 1) (1.39)

a stationary part vee[no] including the potential of the undisturbed system
and the response potential Jvee[n] depending on the time-dependent density.

e Within the no-response approach dve, = 0 one finds that the LDA approx-
imation of the exchange potential notoriously overestimates the electron
loss process (net-capture and ionization) (1.28), whereas the OPM ex-
change yields accurate results [26,37]. This corresponds to the fact that a
correct prediction of the first ionization potential depends on the correct
treatment of the exchange potential. The incorrect asymptotic behaviour
of the LDA potential leads to additional artificial structures in the doubly
differential cross section for inclusive single-electron emission [38].

e The inclusion of response effects becomes important with decreasing im-
pact energy as the electrons have more time to adapt to the actual poten-
tial. In particular g-fold ionization is considerably reduced by response
effects as the binding energies of the residual electrons are increased dur-
ing the collision [39]. g-fold capture might be reduced by the fact that
the projectile charge decreases due to consecutive electron transfer [40].

These issues are discussed in closer detail in Chapter 2 of this book. So far
it is difficult to judge the importance of correlation effects for the dynamical
calculation. It certainly seems to be more important to include correlation
in the evaluation of observables which again requires the knowledge of the
functional dependence of these observables on the one-particle density.

1.5.3 Fragmentation of Atomic Clusters in Collisions with Ions

The fragmentation of atomic clusters exposed to an external laser field or as a
result of a heavy particle collision are studied within the non-adiabatic molec-
ular dynamics formalism. The theory combines the time-dependent LDA ap-
proach to the electronic motion with a molecular dynamics description for the
classical paths of the cluster fragments. The relevant KS equations are either
solved on a grid (for a review see [41]) or in a finite basis expansion of the
time-dependent KS orbitals [42]. The latter formalism has been successfully
applied to collisions between ions and sodium clusters followed by electron
transfer [43] and fragmentation processes [44].
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1.6 Conclusion

For time-dependent systems with many active electrons DFT provides a real-
istic if not the only practicable approach to the quantum many-body problem.
The basic theorems state that the many-particle TDSE can be mapped onto
a set of single-particle equations from which the exact one-particle density
can be calculated. Any observable of the system is in principle exactly related
to the density in terms of density-functionals.

Approximations are, however, necessary due to the fact that (i) the single-
particle (KS) potential including the many-electron effects is not known ex-
actly and (ii) the functional dependence of the observables on the density can
so far be formulated only for a few cases.

The structural simplicity of the time-dependent KS equations opens the
room for many applications in atomic and molecular physics which require a
microscopic quantum theory but are far too complex for traditional methods.

Acknowledgements The author gratefully acknowledges friendly and fruit-
ful collaborations with Reiner Dreizler, Tom Kirchner, and Marko Horbatsch.

Appendix

A few examples of probabilities as functionals of the g-particle density are
collected in this appendix.

e The ¢-fold ionization of a N-particle system exposed to a laser pulse is

N
(L,
q TN-—aJa

q
— Z(_l)u (N q+l/) / 7N—q+u. (1'40)
=0 N — q TN—-q+v

e Contrary to the g-fold ionization one defines the inclusive g-fold ioniza-
tion, the probability of finding at least ¢ electrons emitted to the contin-
uum

v=0
e The transferionization in a collision between a bare ion and an initially

neutral target can be calculated using equation (1.32): k-fold capture in
coincidence with [-fold ionization is thus

N\ (k+1 N
Pprp = = 1.42
P (k + l) ( l > /I‘N—k—lpkll K ( )

l v
S5 (-1 (N —1l+v)! / Nl
/,L!(I/ - ,u)‘k'(N - k‘ - l)‘ TN—k—l4+ppk+v—p )

v=0 p=0
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e Neutralization of the projectile in collisions between He™ and a neutral
target ((N+1)-electron system):

PHe=/ v2—3/ 73+6/ 7‘#---%/ 7. (1.43)
P2 p3 P4 P2

The higher order terms correct the inclusive capture probability for the
production of negative ions. These probabilities are, however small.
e Jonization of the projectile for the same scattering system:

PHe2+:1—/'y+/ 72—/ 73:|:...%1—/'y+/ 72 . (1.44)
P P2 P3 P p2

All these probabilities can only be evaluated explicitly within the independent
particle picture, where the g-particle density is given in terms of the one-
particle density matrix elements

Y@, 21) y(T1,22) ... v(T1,T)
Por,ea) = | S (1.45)
’Y(qu,.’El) '7("5(171'2) V(xqaa:q)
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2 Electron Interaction Effects in Ion-Induced
Rearrangement and Ionization Dynamics:
A Theoretical Perspective

T. Kirchner

2.1 Introduction

A considerable fraction of recent work in atomic and molecular collision
physics was motivated by the quest for a better understanding of electron
interaction effects. Excitation, rearrangement, and fragmentation patterns
mirror various facets of the mutual Coulomb repulsion and the indistinguisha-
bility of electrons and provide a wealth of information on the characteristics
and peculiarities of interacting many-fermion systems.

Naturally, the many-electron quantum dynamics is most transparent and
best understood in situations, in which descriptions in terms of only a few
coupled states or amplitudes of perturbation expansions are appropriate. In
ion—atom collisions, which are considered in this Chapter, these conditions
are met either at low impact energies, where the dominant capture processes
are caused by nonadiabatic couplings between quasimolecular states, or in
fast collisions of weakly charged ions, in which rearrangement and ioniza-
tion processes can be described in terms of first- and second-order Born am-
plitudes. Such situations and corresponding theoretical approaches are well
documented in the literature [1,2], and will not be discussed here. Instead,
the intermediate energy regime, in which the coupling of different reaction
pathways calls for a nonperturbative solution of the Schrédinger equation is
addressed.

This region poses high demands on the theoretical treatment even for
one-electron scattering systems. Only recently has it become possible to im-
plement approaches for the simultaneous calculation of accurate total cross
sections for capture, ionization, and excitation processes, and for the calcu-
lation of differential electron emission patterns (cf. Sect. 1.3.2 and references
cited therein). A few works were also concerned with the fully correlated de-
scription of two-electron systems [3,4], in particular, with the ionization of
helium atoms by protons (p) and antiprotons (p) [5-8], which is regarded as
a prime example for the manifestation of electron correlation effects.

A simple estimate shows that such explicit many-electron calculations will
be prohibitive for systems with more than two active electrons for some time
to come [9]. The outstanding interpretation of the rich experimental data
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accumulated in recent years [10], therefore, calls for simplified approaches to
the many-body problem of atomic collision physics. A few of such models,
namely, the Forced Impulse Method [5], the Frozen Correlation Approxzimation
[11], and the Independent Time Approxzimation [9] include some aspects of
the electron—electron interaction explicitly without being computationally as
costly as fully correlated calculations. Up to now, however, no applications
to systems with more than two active electrons have been reported, which
indicates the still demanding nature of these methods.

One may thus conclude that the only practicable approach to treat true
many-electron systems in atomic collisions is some kind of effective single-
particle description, i.e., the solution of single-particle equations for all ac-
tive electrons. The usefulness of such independent particle models (IPMs)
has been demonstrated in several works, but also their limited validity has
been emphasized [2]: By definition they are not suited to discuss electron
correlation effects.

It is explained in Chapter 1 of this book how Density Functional Theory
(DFT) puts these issues into perspective. The central theorems of DFT en-
sure the existence of an ezact mapping of the true many-body problem to an
effective single-particle description, thus providing a sound basis for the appli-
cation of IPM-type approaches. Admittedly, the promise to solve the many-
body problem exactly is neglected in practice, since the exact expressions for
many important quantities are not known and have to be approximated, but
DFT proved to be a powerful tool for the description and understanding of
dynamic [12] and, of course, stationary [13] many-body quantum systems.

It is the purpose of this contribution to demonstrate the usefulness of DFT
for ion—atom collisions at intermediate impact energies. The key concepts of
the time-dependent version of DFT, which provide the basis of this discussion
are summarized in Chapter 1 and will not be explained in detail here. Only a
few remarks at the beginning of Sect. 2.2 are in order to keep the discussion
self-contained for a reader who is familiar with the basic ideas of DFT. After
that, some specific approximations are introduced, which are both necessary
to make the numerical solution of the problem at hand feasible, and helpful
to classify the role of electron interaction effects in the collision dynamics.
Some results, which are selected from a series of recent papers [14-21] are
discussed in Sect 2.3. Emphasis is given to the analysis of different facets of
the electron—electron interaction, which can be identified from the comparison
of theoretical results with experimental data. Some concluding remarks are
provided in Sect. 2.4.

2.2 Classification of Electron Interaction Effects:
A Density Functional Approach

Ton—atom collisions at not too low impact energies can be discussed within
the impact parameter model [22]: the motion of the nuclei is described in
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terms of a classical straight-line trajectory R(t), which gives rise to a time-
dependent external potential in the Hamiltonian (1.5) of the many-electron
system (atomic units with i =m, = e = 1 are used)

. Yz Z
vo=3 (-5 - ) @

=1

Here, Z1 and Zp denote the nuclear charges of the target and projectile
nuclei, respectively, and r; is the coordinate of the j-th electron. By virtue
of the Runge-Gross theorem [23] the time-dependent many-electron problem
can be mapped to an effective single-particle description, in which the ezact
density n(r,t) of the system is obtained from the solutions of single-particle
equations (1.9). Moreover, the many-electron wave function as well as practi-
cally all observables of the system are uniquely determined by n(r,t). Hence,
the so-called Kohn-Sham (KS) scheme is formally equivalent to solving the
N-electron Schrédinger equation (1.1).

As discussed in Chapter 1 the downside of the structural simplicity of the
KS scheme is the lack of knowledge of the true density dependences of the
effective KS potential in the single-particle equations and of many impor-
tant observables, such as multiple-ionization yields. Therefore, approxima-
tions are necessary on two fronts in practical calculations provided that the
time-dependent KS equations can be solved accurately for a given potential.
Such approximations and their physical implications are sketched in the next
two Subsections.

2.2.1 Effects Associated with the Kohn-Sham Potential

Some general properties of the KS potential as well as the time-dependent
Local-Density Approzimation (LDA) and the time-dependent Optimized-Po-
tential Method (OPM) are discussed in Sect. 1.3.1. These two approaches
were used for the calculation of charge transfer in Ar8*-Ar collisions [24],
but results for ionization were not reported. Ionization has been considered
very recently in p-He collisions [25].

The work to be discussed in this Chapter relies on a decomposition of the
KS potential into the external Coulomb potential of the projectile and target
nuclei and two different contributions to the remaining effective electron-
electron interaction vee: A stationary part v2, that accounts for the electron—
electron interaction in the undisturbed ground state of the target atom, and
a response potential dvee that depends on the time-dependent density and
reflects the change of the electronic interaction in the presence of the projec-
tile:

Vee (T, 1) = 02 (1) + See (T, 1) . (2.2)

In the no-response approximation, dvee is neglected completely. This is well
justified for fast collisions, in which the electronic density does not change
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considerably during the short interaction time, and, more generally for one-
electron transitions over a broad range of impact energies. One is then left
with the question, which level of accuracy is needed for the ground-state
potential v2, in order to obtain reliable results in these situations.

To investigate this issue, the effective potential vJ, has been split into the
classical Hartree and the exchange-correlation potentials, and two different
approximations have been considered for the latter [14,15], which were tested
extensively in atomic structure calculations [13,26]:

o the LDA [27], which similarly to the Hartree-Fock—Slater (HFS) approx-
imation [28] rests on the density dependence of the homogeneous elec-
tron gas. As a consequence, the exchange part decreases exponentially
in the asymptotic region rather than exhibiting the correct —1/r tail.
This deficiency is cured a posteriori by the Latter correction [30] or by
more sophisticated self-interaction correction schemes [31], but exchange
potentials of this type are, of course, only approximate. The smaller cor-
relation contribution is given in terms of accurate analytic interpolation
formulae [29].

e the OPM, in which exchange effects are treated nearly exactly [26,32].
It was also demonstrated that correlation can be included in the OPM
in a systematic fashion [33], but test calculations with a semi-empirical
correlation potential indicated that the static correlation contribution is
too small to influence total scattering cross sections significantly [15].

From this short discussion it can be expected that the comparison of
results obtained with the LDA and the OPM sheds light on the role of static
exchange effects in collision processes. This is indeed the case and will be
demonstrated in Sect. 2.3.1.

In the next step response effects have been included in the potential vee
in a global fashion [18]. An important property of response is the increased
attraction of the total target potential as soon as capture and ionization
processes set in during the collision. This feature can be modeled by approx-
imating the target potential as a linear combination of ionic ground-state
potentials with time-dependent g-fold electron removal probabilities P,(t) as
weighting factors. When the ionic potentials are related to the stationary
potential v, by simply adjusting the asymptotic tail of the latter one arrives
at the target response potential [18]

1 X
ee(r,t) = N1 Z(q — 1P, (t)vd,(r) . (2.3)

q=1
The effects of target response on collision cross sections are discussed in
Sect. 2.3.2. A similar model was devised to study projectile response effects
which are associated with the unscreening of the projectile ion due to capture
processes, but for the cases investigated so far projectile response turned out

to be of minor importance [20].
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A somewhat different response model was introduced recently to inves-
tigate p-He collisions [21]. It is motivated by the fact that the no-response
approximation predicts an instable quasimolecule (pHe) at internuclear dis-
tances R < 0.5 a.u., whereas the true adiabatic ground-state energy level lies
below the threshold for single ionization for all R [34,35]. As a consequence,
single ionization at low impact energies is too high when calculated in the
no-response model.

In order to remedy this flaw an adiabatic response potential was con-
structed in [21] such that the binding energy of the lowest single-particle
level reproduces the true ionization potential of the quasimolecule at small
R. The potential was taken to be of the form

p(R)r cosd

with parameters p(R), d(R), and a(R) adjusted to fulfill the condition men-
tioned above.

Such modeling of particular features of the electron—electron interaction
poses the question of how to construct a response potential that comprises the
desired properties automatically in a systematic fashion. The most promising
approach is certainly the time-dependent OPM (Sect. 1.3.1). In the exchange-
only limit the scheme has been worked out theoretically and has been applied
to various physical problems, but a full implementation that allows the de-
scription of ionization and capture processes in ion—atom collisions has not
been reported yet. A time-dependent correlation potential beyond the adia-
batic approximation (Sect. 1.3.1) has only been proposed on the level of the
LDA so far [36].

Ovee(r, R) = —a(R)e™" — (2.4)

2.2.2 Effects Associated with the Density Dependence
of Observables

In Sect. 1.4.1 it is explained how particle numbers for net ionization and
net capture can be calculated exactly from the density at asymptotic times
after the collision. Corresponding cross sections are well suited to study the
effects associated with the KS potential, since they are not contaminated
with approximations on the second front: the extraction of observables from
the solutions of the KS equations.

The density dependence of more detailed observables, such as probabilities
for finding q out of N electrons in the continuum is only known approximately.
These probabilities can be expressed in terms of g-particle densities, which
are given as q X ¢ determinants of the one-particle density matrix in the
exchange-only limit (cf. Sect. 1.4.2). The determinantal structure reflects the
antisymmetry of the N-electron wave function, i.e., the Pauli principle is still
taken into account on the level of the density matrix analysis.

Very often, the determinantal structure is neglected in practice, usually
without analyzing this additional approximation. All probabilities of interest
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can then be calculated by multinomial expressions of single-particle proba-
bilities, which are sometimes modified to circumvent certain problems, such
as non-zero probabilities for unphysical multiple-capture events [17]. It will
be demonstrated in Sect. 2.3.3 for one obvious and one subtle example that
the effects of the Pauli principle in the final states become apparent when
data obtained from multinomial and density matrix analyses are compared.

In the case of a two-electron spin-singlet system evolving from its initial
ground state the determinantal structure of the g¢-particle densities breaks
down and the single- and double-ionization probabilities are reduced to the
simple binomial formulae (1.36). That this exchange-only analysis is not com-
patible with double ionization probabilities obtained from more elaborate
methods is pointed out in Sect. 2.3.4, in which some of the limitations of the
present approach are sketched.

2.3 Identification of Electron Interaction Effects:
Comparison with Experiment

As mentioned before, the accurate solution of the time-dependent KS equa-
tions for ion—atom collision systems is a delicate numerical problem even in
the simplest case of the no-response approximation. Therefore, the develope-
ment of an efficient propagation method was a prerequisite for a meaning-
ful investigation of electron interaction effects. The Basis Generator Method
(BGM) [37] proved to be such a method in a number of succesful studies
[14-21,38]. The idea of the BGM is the representation of the single-particle
orbitals in a dynamically adapted model space, i.e., in terms of a basis that
spans that part of the Hilbert space that is relevant for the specific problem
under investigation.

Typically, the BGM basis sets used consist of undisturbed target eigen-
states of the 1s through 4f states and a set of approximately 100 pseudo
states generated by the repeated application of a regularized Coulomb po-
tential at the projectile center on the undisturbed functions. The observables
discussed below are extracted from the numerical solutions by the methods
explained in Chapter 1.

2.3.1 Static Exchange Effects

The influence of static exchange effects on the ion-atom collision dynamics
was studied by solving the time-dependent KS equations on the level of the
no-response approximation with target ground-state potentials obtained from
the OPM and the Latter-corrected LDA, respectively [14,15]. Let us focus on
net ionization and capture cross sections at first in order to disentangle effects
associated with the form of the KS potential from effects, which correspond
to the approximate extraction of less global observables from the solutions of
the KS equations.
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Fig. 2.1. (a) Net ionization and (b) net capture cross sections as functions of
impact energy for p-Ne collisions. Lines: BGM calculations with different atomic
potentials [48]. Experiment: open circles [49], closed circles [50]

In Fig. 2.1 results for the p-Ne collision system are presented. Clearly, the
LDA leads to capture and ionization cross sections that are too large over
the entire range of impact energies, whereas the agreement with the exper-
imental data is convincing when the OPM potential is used. The failure of
the LDA solutions can be traced back in part to the inaccurate prediction
of the first ionization potential, i.e., to an underestimation of the binding
energy of the outermost 2p electrons. However, it is not sufficient to cor-
rect this binding energy by simply adjusting the overall strength of the LDA
exchange potential. This can be inferred from results for total [14] and dif-
ferential [15,39] electron removal cross sections obtained with a HFS target
potential whose exchange contribution differs from the LDA expression by
the factor @ = 3/2. In particular, a thorough analysis of heavy-ion induced
electron emission patterns demonstrated that the sudden switching from the
exponentially decaying exchange potential to the asymptotic —1/r tail intro-
duced by the Latter correction is an additional source of errors and produces
artificial structures in the doubly-differential cross section [39].

Two conclusions can be drawn at this point:

e Inaccurate treatments of the static exchange potential of the target atom
lead to wrong electron removal cross sections. This demonstrates that
static exchange effects are indeed mirrorred in such data.

e Response effects are of minor importance for proton induced transitions
at least as long as net-electron processes are considered: Otherwise the
results obtained with the OPM description of the target atom would not
be in good agreement with the experimental data. Only at intermediate
impact energies do we observe a theoretical net ionization cross section
which lies above the experimental result [Fig. 2.1(a)]. From the discussion
in the next Subsection it will become clear that this discrepancy is a
signature of target-response effects.
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2.3.2 Response Effects

Multiply charged projectile ions induce multiple-electron removal processes
with higher probabilities than singly charged ions. They produce higher av-
erage recoil-ion charge states and should thus be more sensitive to response
effects. Therefore, let us consider the He?t-Ne collision system as a first appli-
cation for the target response model (2.3) based on the static OPM potential.

As expected, the results for net ionization and capture (Fig. 2.2) obtained
from the no-response approximation deviate more strongly from the experi-
mental data than in the case of proton impact. Both cross sections are reduced
at low and intermediate impact energies Ep when target response is included,
while they are insensitive to response effects at higher Ep. This behavior con-
firms the earlier assumption that response is not effective when the projectile
moves considerably faster than the outershell target electrons. In the case of
ionization [Fig. 2.2(a)] the reduction of the cross section below Ep = 500
keV /amu leads to an almost perfect agreement of the target response data
with the experimental results of [40]. These measurements are believed to
be more accurate than the earlier data of [41] that are also included in the
Figure.
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Fig. 2.2. (a) Net ionization and (b) net capture cross sections as functions of impact
energy for He?T-Ne collisions. Full and dash-dotted lines: BGM calculations with
and without target response, respectively [18]. Experiment: closed triangles [40],
closed circles [41]

For the capture channel [Fig. 2.2(b)], however, the agreement holds only
down to Ep = 20 keV/amu, while the theoretical cross section lies above
the experimental one at slower collisions. In this region, the influence of the
response potential (2.3) on the capture cross section is rather small. This is
partly due to a compensation of the behavior of electrons of different sub-
shells: while capture of the 2s electrons is reduced by response effects the
2p electrons are transferred to the projectile with higher probability when
0Uee is included in the description. This is a consequence of the changing en-
ergy differences and coupling strengths between the relevant channels when
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response is or is not taken into account. It suggests that the electron dynam-
ics in slow collisions are rather sensitive to the specific form of the response
potential. First attempts to include a spherical model for time-dependent pro-
jectile screening did not improve considerably upon the data of Fig. 2.2(b). At
present, it is not clear whether a microscopic exchange-only response model,
e.g., based on the time-dependent OPM would resolve the discrepancy with
the experimental data or whether correlation plays a crucial role for electron
capture in this energy region.

As a further example, the net ionization cross section for singly charged
He-ion impact on Ne atoms is shown in Fig. 2.3. In this case, free electrons
are produced by target and by projectile ionization, so that the time evolu-
tion of the active projectile electron driven by the target potential has also to
be taken into account. This was done on the level of the no-response approx-
imation by an analogous BGM expansion (details are discussed in [19]). It
was found that 20-30 % of the cross section displayed in Fig. 2.3 stems from
such projectile ionization events. The contribution due to target ionization
is again reduced by target response, and the resulting net ionization cross
section is in good agreement with the experimental data of [42]. Similar to
the case of He?*-impact these measurements are in conflict with earlier data
obtained from a different experimental set-up [43], and are believed to be
more accurate, although no clear explanation for possible errors in the earlier
measurements was provided [42].

-—-- no response _|
—— response

[S2EEN |

Fig.2.3. Net ionization cross sec-
tion as a function of impact energy
for He*-Ne collisions. Full and dash-
dotted lines: BGM calculations with
Ll L and without target response, respec-
100 1000 tively [19]. Experiment: closed trian-

Ep [keV/amu] gles [42], closed circles [43]
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Finally, results of the adiabatic response model for the ionization in p-
He collisions are discussed. In Fig. 2.4 the single ionization cross section
obtained with and without adiabatic response is compared with experimental
data and results of correlated two-electron calculations. Note that with the
consideration of single instead of net ionization we are faced with the second
source of errors besides the approximate form of the KS potential: we have
to calculate the probability to remove exactly one electron from the target,
which is only known in the exchange-only approximation (1.36). However,
the effects of the exchange-only analysis should be of minor importance in
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Fig. 2.4. Single ionization cross section as a function of impact energy for p-He
collisions. Theory: lines: BGM calculations with full adiabatic response, with adia-
batic response without dipole contribution, and without response [21]; short-dashed
curve [7], long-dashed curve [35], short-dotted curve, multi-cut FIM [5], long-dotted
curve with crosses [6]. Experiment: closed circles [51], open circles [52]

the present case, in which multiple ionization events occur only with small
probabilities and single ionization P; does not differ considerably from net
ionization Ppet = P +2P,. Evidently, such an argument does not apply when
one considers double ionization (cf. Sect. 2.3.4).

Returning to the discussion of potential effects we first observe in Fig. 2.4
that there is a problem with the full adiabatic response potential of (2.4): The
results lie considerably below the experimental and the other theoretical cross
sections in the region above Ep = 40 keV, in which adiabatic effects should
not play any role, as the electron cloud does not have enough time to adjust
to the two-centre potential of the nuclei. When the calculations are repeated
with the dipole contribution in (2.4) turned off the results do merge with
the no-response cross section at intermediate impact energies. At lower Ep,
however, they lie significantly below the no-response data, and are in close
agreement with the cross section obtained with the full adiabatic response
potential (2.4). Hence, the dipole part of (2.4) should be omitted entirely as it
is relatively unimportant at low Ep and reduces the cross section wrongfully
at higher Ep.

Remarkably, the results obtained with the dipole correction turned off are
in good agreement with the much more elaborate two-electron calculations
of [5-7] down to Ep = 10 keV. This demonstrates that the reduction of
the no-response cross section in the 10 keV < Ep < 50 keV range is not
caused by explicit correlation effects, such as the deviation of the true two-
electron wave function from a simple product form, but is mainly due to a
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global response of the electron cloud in the presence of the antiproton. Note
that this conclusion cannot be deduced from the results of the two-electron
models, since it is difficult to trace different aspects of the electron—electron
interaction in these ‘complete’ calculations.

At even lower impact energies the situation is less clear, since the coupled-
channel calculation of [6] and the hidden-crossing calculation of [35] predict a
significantly smaller cross section than the adiabatic response model, but are
in conflict with each other. The picture becomes even more confusing when
the experimental results are also taken into consideration as they lie below
all theoretical data at Ep < 30-40 keV and do not seem to approach the
results of the hidden-crossing calculation below 10 keV. New measurements
are planned for the near future and may help to clarify this situation.

2.3.3 Pauli Blocking

In this Section effects associated with the antisymmetry of the final many-
electron state are discussed. As mentioned in Sect. 2.2.2, the antisymmetry
and the Pauli principle are maintained when the analysis is based on g¢-
particle densities in the exchange-only approximation (cf. Sect. 1.4.2). By
contrast, widely used multinomial formulae for ¢-particle probabilities rest
on the assumption that the many-electron wave function can be expressed as
a simple product state.

To demonstrate the role of the Pauli principle results for target electron
capture and projectile electron loss in Het-Ne collisions obtained from both
types of analyses are presented in Fig. 2.5. More specifically, the multinomial
results were calculated with the analysis in terms of products of binomials
proposed in [17]. Standard multinomial statistics for capture suffers from
the problem that one obtains non-zero probabilities for unphysical multiple
capture events which correspond to the formation of negatively charged pro-
jectile ions. This problem is avoided in the products-of-binomials analysis.
The unphysical channels are eliminated, and the net capture probability is
distributed statistically over the physically allowed ones. All cross sections of
Fig. 2.5 are extracted from the same set of single-particle calculations, which
are based on the target-response model defined by (2.3) and the no-response
approximation for the propagation of the active projectile electron [19].

The results for electron capture corresponding to the neutralization of
the projectile ion [Fig. 2.5(a)] are easily explained. In the ‘products’ analysis
both spin-up and spin-down electrons contribute to the cross section in the
same fashion, since they are not hindered by the fact that the dominant final
He(1s?) state is a spin-singlet. As a consequence, the experimental cross sec-
tion is overestimated by almost a factor of two. The density matrix analysis,
termed ‘Pauli’ in Fig. 2.5, takes this aspect into account and leads to nearly
perfect agreement with experiment. Hence, the neutralization cross section
reflects Pauli blocking very directly.
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Fig. 2.5. Total cross sections for (a) neutralization of and (b) electron loss from
the projectile as functions of impact energy for Het-Ne collisions. Lines: BGM
calculations with target response and final-state analysis in terms of products of
binomials (full curve) and density matrix analysis (broken curve); The dotted curve
in the right panel corresponds to a single-particle calculation for the active He™
electron [19]. Experiment: closed triangles [42], closed circles [43], open circles [53]

The situation is more subtle for the case of projectile electron removal, for
which the density matrix analysis reduces the cross section again by almost
a factor of two from low to intermediate impact energies, and leads to very
good agreement with experiment in this region [Fig. 2.5(b)]. At first sight, one
might be surprised that the two analyses yield different results at all, since
many configurations contribute to this process, and ‘blocking’ of final states
should not be important. In fact, the observed reduction of the cross section
in the density matrix analysis can only be understood with a formal argument
based on probability conservation [19]: By incorporating the antisymmetry
into the state vector the transferred electron density is redistributed such
that the correct balance for He®, Het, and He?t formation is obtained.

The redistribution is ineffective at high impact energies, where He® for-
mation is very unlikely [cf. Fig. 2.5(a)]. In this region, the data obtained
from both analyses merge, and are also in agreement with the result of a sim-
ple calculation with one active He™ electron and frozen target electrons. All
theoretical data lie somewhat below experiment in this region, which prob-
ably indicates the lack of a correlation contribution in the KS potential (cf.
Sect. 2.3.4). The single-electron model overestimates the cross section badly
at lower impact energies demonstrating that simultaneous electron transfer
processes from the target to the projectile affect the final projectile charge
state decisively and cannot be neglected.

Summarizing the discussion of this Section it can be stated that a careful
analysis of the final wave function is crucial for the understanding of cross
sections, for which the final charge state of the projectile (and of the tar-
get) are well-defined. The exchange-only analysis appears to be sufficient to
explain the formation of He® and He?* in Het-Ne collisions quantitatively.
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2.3.4 What Lies Beyond: Correlation Effects

All results presented in this Chapter have been obtained on the level of the
exchange-only approximation. Correlation effects in the KS potential and in
the analysis of the final wave function have been ignored. This Subsection
has the purpose to exemplify the limitations of this treatment.

At first, we consider a case, for which correlation effects associated with
the KS potential can be isolated. A critical look at the net ionization cross
section in Het-Ne collisions (Fig. 2.3) indicates that the theoretical results
slightly underestimate the experimental data at impact energies above 200-
300 keV/amu. Based on a perturbative description of the scattering process it
was argued that ionization of the projectile electron, which contributes to net
ionization can be induced either by an interaction with the (screened) target
nucleus or by an interaction with one of the target electrons [2]. In particular,
the second process, sometimes termed antiscreening has been the subject
of many studies in recent years (see, e.g., [44,45] and references therein).
When calculated in the plane-wave Born approximation and added to the
theoretical net ionization cross section displayed in Fig. 2.3 it leads to an
improved agreement with experiment [19].

From the DFT viewpoint antiscreening must be contained in the ezact
time-dependent KS potential, since the net ionization cross section is calcu-
lated from the density without approximation in the analysis. Furthermore,
since the calculations displayed in Fig. 2.3 are based on the exchange-only
OPM target potential and since response effects are unimportant at impact
energies above 300 keV /amu we have strong reason to believe that it is the
time-dependent correlation potential, which gives rise to the desired enhance-
ment of the net ionization cross section. Its inclusion should also remove the
more apparent discrepancies between the theoretical results and experiment
in projectile ionization at high impact energies [Fig. 2.5(b)], for which the
role of the antiscreening contribution is normally discussed rather than for
net ionization [2,44]. Conceptually, however, this case is somewhat less clear,
since the projectile electron loss cross section is not calculated exactly from
the electron density, but in the exchange-only approximation, which might
also influence the results.

The failure of the exchange-only analysis becomes apparent for the case
of a two-electron system, for which it reduces to the simple binomial formu-
lae (1.36) which predict a fixed relation between the one- and two-electron
probabilities (1.37). This appears to be in conflict with the fact that the total
single-ionization cross section is very similar in p- and p-He collisions at high
energies Ep > 1 MeV, while double ionization by antiprotons is significantly
more efficient than by protons [46]. In principle, such a pattern is not prohib-
ited by the exchange-only analysis as the impact parameter dependence of
p- and p-He ionization events could be such that an equal single-ionization
and a different double-ionization cross section is obtained. However, this con-
tradicts the expectation of perturbation theory, and in fact results of the
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correlated Forced Impulse Method at Ep = 2.31 MeV [47] showed that the
single-ionization probability is almost indistinguishable, while the double ion-
ization probabilities exhibit pronounced deviations for p and p impact. The
relation (1.37) is clearly violated.

This suggests that the important part of electron correlation in the regime
of high impact energies is hidden in the unknown true density dependence of
the double-ionization yield, and not in the KS potential. At lower Ep, dynam-
ical effects should become more important, and both aspects of correlation
might contribute to the fact that pronounced deviations from experiment and
from correlated calculations occur when double ionization is calculated with
the adiabatic response potential (2.4) and the binomial formulae (1.36) [21].

2.4 Concluding Remarks

It was the purpose of this Chapter to show that various facets of the many-
electron dynamics in ion—atom collisions can be explained from the viewpoint
of time-dependent Density Functional Theory. The effects of exchange and
response contributions in the Kohn-Sham potential, and the role of Pauli
blocking in the final states were analyzed by comparing calculations per-
formed on different levels of approximation with experiment. This has only
become possible with the developement of the Basis Generator Method for
the accurate solution of the KS equations.

Given the reliability of the BGM and the accuracy of the experimental
data remaining discrepancies can be attributed to microscopic response and
correlation in the KS potential and correlation in the density dependence of
the observables considered. In some cases, both aspects can be separated,
which might be helpful for the developement of functionals that include cor-
relations. Some ideas were reported for the case of the time-dependent KS
potential in the literature, but — to the author’s knowledge — no approaches
for the calculation of observables, such as multiple-ionization yields beyond
the exchange-only approximation have been developed so far. This would
certainly be a major breakthrough for the application of DFT to ion—atom
collisions, and, more generally, for the understanding of the time-dependent
many-electron problem.

Acknowledgement I thank Hans Jiirgen Liidde and Marko Horbatsch for
our fruitful and enjoyable collaboration.
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