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Abstract

Using a single-particle picture that is based on time-dependent density functional the-
ory we analyze the He+-Ne collision system, in which the projectile electron as well as
the target electrons undergo inelastic transitions. It is shown that many experimental
cross sections can be understood if the model is applied carefully and consistently.
In particular, we consider (i) the problem of nonorthogonal propagated target and
projectile orbitals, (ii) the antisymmetry of the many-electron wave function, and
(iii) dynamical screening effects.

1 Introduction

In an ion-atom collision experiment one often encounters the situation that electrons
are attached to the target and to the projectile in the initial channel. In many
cases, namely if the projectile ion is highly charged its electrons are so tightly bound
that they merely screen the nucleus and undergo transitions at most with very small
probabilities compared to the outer electrons of the neutral target atom. From a
theoretical point of view this implies that it is not necessary to deal with the projectile
electrons explicitly as long as one is interested in the dynamics of the target electrons
only. It is then sufficient to treat the projectile as a point charge with fixed charge
state. The situation changes, however, if one considers more symmetric collision
systems, in which the binding energies of the outer target and projectile electrons are
comparable. In such systems, both ’kinds’ of electrons are active, i.e., they can be
excited, ionized or transferred to the other center in the same event. As a consequence,
one can expect interesting many-electron dynamics, but at the same time it is clear
that a systematic theoretical treatment is difficult.
A natural starting point in order to disentangle the complicated situation is pertur-
bation theory. This road was first taken by Bates and Griffing in the 1950s [1], and
later on elaborated by several authors. In particular, it led to the idea that projectile
electron loss, i.e., electron removal from the projectile ion is mediated either by an
interaction of the projectile electron with the target nucleus, which may be screened
by the target electrons (screening mode), or by an interaction with one of the target
electrons, which is then excited or ionized in the same event (antiscreening mode) [2].
Both processes correspond to different amplitudes in a perturbation expansion, and in
fact, they can be separated experimentally, most clearly by measuring the momentum
distribution of the recoil ions [3]. Very recently, it has been suggested that the iso-
lation of the antiscreening process gives rather clean information on electron-impact
ionization (e,2e) of ions which is difficult to study directly [4].
These analyses and interpretations are restricted to fast collisions, for which low-
order perturbation theory is valid. If one wishes to address intermediate and low
impact energies one is faced with two interrelated problems. Firstly, higher-order
contributions become increasingly important and make an order-by-order analysis
impracticable and a perturbation-theory based interpretation meaningless. Secondly,
electron transfer processes compete with ionization and cannot be neglected even if
the interest is in ionization only.
It is the goal of this contribution to show that one can nevertheless analyze and
understand experimental data taken in this regime on the basis of a relatively simple
model. The model is based on an effective single-particle picture and relies on a
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nonperturbative description of the collision system. As will be shown below the
crucial ingredient for the successful calculation of charge-changing cross sections is a
careful analysis of the single-particle solutions beyond simple statistical models.
The theoretical basis and the specifications of the model are discussed in Sec. II, while
selected results are presented in Sec. III for He+(1s)-Ne collisions. This system has
been considered before in a similar framework [5], but less sophisticated analyses of
the single-particle solutions were used. A more complete comparison of the previous
and the new data as well as results for other systems (e.g., He+-Ar) will be presented
in a future work. Atomic units (h̄ = me = e = 1) are used throughout.

2 Theory

Our theoretical approach to the problem at hand with N active target electrons and
one active projectile electron is based on an effective single-particle description of
the (N + 1)-electron system and the semiclassical approximation of heavy-particle
collisions, in which the motion of the nuclei is described by a classical (straight-line)
trajectory R(t). Although the single-particle description is approximate in prac-
tice it rests on a firm foundation provided by the basic theorems of time-dependent
density functional theory (TDDFT) [6, 7]. These statements can be summarized as
follows: (i) The observables of a time-dependent quantum system are unique func-
tionals of the one-particle density n(r, t); (ii) the exact density n is given as a sum
of orbital densities |ψj|

2 with orbitals that satisfy time-dependent single-particle (so-
called Kohn-Sham) equations; (iii) the Kohn-Sham equations are driven by a local
time-dependent potential, which is again a functional of n. The form of this potential
is, however, not known exactly, and has to be approximated.

2.1 Single-particle Hamiltonians and equations

In this work, we adopt a simplified viewpoint and employ different single-particle
potentials for the time development of the initial target and projectile electrons. For
the initial target electrons we solve

i∂tψj(r, t) = ĥT (t)ψj(r, t), j = 1, . . . , N (1)

with

ĥT (t) = −
1

2
∆ +

(

−
QT

rT

+ vee(rT , t)
)

+
(

−
QP

rP

+ vP
H(rP )

)

. (2)

QT and QP are the charges of the target and projectile nuclei, and rT and rP denote
the distances of the active electron to the target and projectile centers, respectively.
We choose the target center as the origin of the reference frame such that rP =
rP (t) = |rT − R(t)|. The interaction of a target electron with the single projectile
electron is described by the electrostatic (Hartree) potential of a hydrogenlike 1s
orbital

vP
H(rP ) =

1

rP

[1 − (1 +QP rP ) exp(−2QP rP )], (3)

while the interaction with the other (N − 1) target electrons consists of stationary
and time-dependent parts

vee(rT , t) = vee([n0]; rT ) + δvee(rT , t)

= vH([n0]; rT ) + vx([n0]; rT ) + δvee(rT , t). (4)
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The stationary contribution vee([n0]; rT ) is a functional of the ground-state density n0

of the N -electron atom. It includes accurate Hartree (H) and exchange (x) potentials
obtained from the optimized potential method (OPM) of ground-state DFT [8]. The
time-dependent contribution δvee(rT , t) accounts in a global fashion for the response
of the electronic cloud in the presence of the projectile. More specifically, we use the
ansatz

δvee(rT , t) =
−1

N − 1

N
∑

q=1

(q − 1)P loss
q (t) vee([n0]; rT ), (5)

which was suggested in Ref. [9] as a global model for the increasing attraction of
the target as q electrons are removed in the course of the collision with probabilities
P loss

q . We call this model target response model and the one that is characterized by
δvee = 0 no response approximation in the following.
For the initial projectile electron specified by j ≡ N + 1 we solve

i∂tψj(r, t) = ĥP (t)ψj(r, t), j ≡ N + 1 (6)

with

ĥP (t) = −
1

2
∆ −

QP

rP

+
(

−
QT

rT

+ vT
H([n0]; rT )

)

(7)

in the projectile reference frame, where rT = rT (t) = |rP − R(t)|.
Equations (1)–(7) reflect a rather direct picture of the many-electron dynamics: The
target electrons experience an atomic ground-state potential, a response potential
due to their partial removal from the target atom during the collision, and the time-
dependent screened projectile potential of the moving He+(1s) ion. The projec-
tile electron experiences the Coulomb potential of the He2+ nucleus and the time-
dependent Coulomb potential of the moving target nucleus, which is fully screened
by the N target electrons. A more symmetric model should include also a response
contribution in Eq. (7) due to the removal of the target electrons, but this refinement
is not considered here. Our simpler scheme has the practical advantage that the time
development of target and projectile electrons is completely uncoupled and can be
computed independently. Taking response effects into account not only in the target
but also in the projectile Hamiltonian would couple Eqs. (1) and (6) throughout the
propagation.
We have solved the (uncoupled) single-particle equations (1) and (6) by using our
basis generator method (BGM) [10]. In the BGM, the time-dependent orbitals ψj

are expanded in a pseudo basis which is constructed such that the spanned model
space is dynamically adapted to the problem at hand. For the present work we have
used the same basis sets as described in Ref. [5].

2.2 Analysis of the single-particle solutions

In Ref. [5] it was discussed how one can extract probabilities and cross sections for
charge-changing processes from a combinatorial analysis of single-particle transition
probabilities associated with ionization and electron transfer events. The most direct
way to do this is the multinomial analysis, in which q-particle transitions are given
as sums of all combinations of q single-electron transition probabilities multiplied by
(N + 1− q) single-electron probabilities for not undergoing the transition of interest.
This analysis corresponds to a strict independent particle model (IPM), in which the
transition of one electron is not influenced by the transitions of the other electrons.
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A well-known deficiency of this model is the occurrence of significant probabilities for
very unlikely or completely unphysical processes such as multiple electron-transfer
events that correspond to the formation of negative ions. In Ref. [11] we have sug-
gested a modified scheme termed products-of-binomials analysis which eliminates the
unphysical channels explicitly and redistributes the total flux over the allowed ones
statistically. This ad-hoc modification can be viewed as a step beyond the strict
IPM, and it has been applied in several works with some success (see, e.g., Ref. [12]).
Notwithstanding this success the products-of-binomials analysis can also be criticized
for several reasons: (i) it leads to a slight imperfection in the overall probability con-
servation; (ii) for the present problem of He+-Ne collisions there is no unique way
to account for the fact that double capture is possible when the projectile electron
is removed in the same event, but is prohibited (or at least is to be regarded as an
anomaly) if it remains bound; (iii) it is not based on first-principles arguments.
In the following we describe an alternative procedure which does not suffer from these
defects and which represents a systematic improvement of the strict IPM. In order to
establish this analysis we first note that the single-particle orbitals associated with
the initial target and projectile states are normalized due to the unitarity of the
single-particle equations, but lose their orthogonality during the collision, because
the Hamiltonians (2) and (7) are different

ĥT (t) 6= ĥP (t) → SN+1,j(t) ≡ 〈ψN+1(t) | ψj(t)〉 6= 0, j = 1, . . . , N. (8)

At high energies, where ionization dominates this is not a practical problem, as
the propagated target and projectile orbitals contribute mainly in different regions
of configuration space and have negligible overlap. This is no longer true at lower
collision energies, where electron transfer channels are strong. For the lowest collision
energy considered (EP = 10 keV/amu) we found values for the absolute square of the
overlap integrals in Eq. (8) of up to 0.3.
The problem of nonzero overlap integrals SN+1,j cannot be avoided in a simple way,
but it can be taken into account in the analysis of the single-particle solutions at the
asymptotic time tf after the collision where the propagation is stopped. As we neglect
correlation effects in the potentials of Eqs. (2) and (7) the total (N+1)-electron wave
function of the collision system is given as a single determinant with a factor that
ensures normalization

Ψ(x1, . . . , xN+1; t) =
1

√

(1 −
∑N+1

j=1 |SN+1,j(t)|2)(N + 1)!

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(x1, t) . . . ψN+1(x1, t)
...

. . .
...

ψ1(xN+1, t) . . . ψN+1(xN+1, t)

∣

∣

∣

∣

∣

∣

∣

∣

(9)
〈Ψ(t) | Ψ(t)〉 = 1. (10)

In Eq. (9), xj denotes space and spin coordinates of the jth electron. It is straightfor-
ward to show that the corresponding one-particle density n is not given as a simple
sum of orbital densities, but has to be calculated according to the expression

n(r, t) =
N+1
∑

i,j=1

S−1
ij ψ

∗

j (r, t)ψi(r, t) (11)

which involves matrix elements of the inverse overlap matrix.
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So-called net probabilities, which correspond to average electron numbers at the
target, at the projectile or in the continuum are given as integrals of the density over
the corresponding regions in configuration space at t = tf [7]. As a consequence of
Eq. (11) they carry also information on the overlap of orbitals. Instead of performing
these integrations in r-space we use a channel representation, in which bound target,
bound projectile and the continuum contributions are characterized by finite sets of
single-particle states. This procedure is better adapted to the BGM. The probability,
e.g., for net recoil ion production (the average charge state of the target after the
collision) is then given by

P rec
net = N −

N+1
∑

i,j=1

K
∑

k=1

c i
kS

−1
ij c

j ∗
k |t=tf (12)

with single-particle amplitudes for populating the set of target states {|ϕT
k 〉, k =

1, . . . , K}
c i
k = 〈ϕT

k | ψi〉|t=tf . (13)

Not only the net quantities, but also the more detailed probabilities that correspond
to charge-state correlated events are affected by the nonvanishing overlap integrals.
These probabilities can be expressed as ordered sums of basic inclusive probabilities

Pf1,...,fq
of finding q < N + 1 electrons in specific states labeled by f1, . . . , fq while

nothing is known about the final states of the other electrons [13]. One can show
that the inclusive probabilities Pf1,...,fq

can be expressed as q× q determinants of the
one-particle density matrix γ1

Pf1,...,fq
= det(〈f1|γ̂

1|f1〉 · · · 〈fq|γ̂
1|fq〉) (14)

that has the form [cf. Eq. (11)]

γ̂1 =
N+1
∑

i,j

|ψi〉S
−1
ij 〈ψj|. (15)

The determinantal structure of the inclusive probabilities reflects the antisymmetry
of the (N + 1)-electron wave function, i.e., the Pauli principle. The only difference
of this procedure compared to inclusive analyses that we have employed in previous
works (see, e.g., Refs. [5, 11]) is Eq. (15) for the one-particle density matrix that
involves elements of the inverse overlap matrix. If

Sij = δij i, j = 1, . . . , N + 1 (16)

the previous schemes are readily recovered.

3 Results and Discussion

Comparing results obtained from the expressions (12) and (14) with results of the
strict IPM sheds light on the role of the nonorthogonality of orbitals and the anti-
symmetry of the total (N + 1)-electron wave function. We begin the discussion of
these effects by considering the cross section for net recoil ion production, which is
directly calculated by integration of Eq. (12) over the impact parameter and does

6



not bear information on the antisymmetry of the many-electron state. In Fig. 1 we
compare three sets of calculations with experimental data: (i) results obtained in
the no-response approximation and without taking the nonorthogonality of orbitals
into account (i.e., we assume that SN+1,j(tf) = 0); (ii) results in the no-response
approximation that do account for the nonorthogonality; (iii) results obtained by
including the target response potential (5) in the Hamiltonian (2) and taking the
nonorthogonality of orbitals into account.

Fig. 1: Total cross section for net recoil ion production as a function of impact energy for He+-Ne

collisions. Lines: BGM results (see text for details). Symbols: experimental data from Ref. [16].

At impact energies above EP = 200 keV/amu the results of all sets of calculations
merge and are in good agreement with the experimenal data. This demonstrates
that neither response nor nonorthogonality effects are important in fast collisions, in
which ionization dominates strongly. This changes decisively towards lower impact
energies where electron transfer becomes more important (cf. Fig. 3). Both effects
reduce the recoil ion production cross section, and if we take both of them into
account we obtain perfect agreement with experiment down to the lowest energy
considered. The reduction of the cross section due to target response is obvious
as the response potential (5) is attractive and increases the binding of the target
electrons. The nonorthogonality effect is more subtle: the details of the calculations
show that the overlap integrals (8) become appreciable when electrons are captured
to the projectile with significant probabilities and occupy the same states (mainly 1s)
as the initial projectile electron. This leads to an overcounting of the population of
bound projectile states which is remedied once the total probability is renormalized
appropriately, i.e., if the inverse overlap matrix is not ignored but taken into account
in the evaluation of P rec

net [Eq. (12)].
In Fig. 2 we show similar results for net free electron production, which is the sum
of target and projectile ionization. In this case, the no-response approximation in
conjunction with the neglect of the finite overlap integrals leads to good agreement
with experiment over the entire range of impact energies displayed in the figure.
However, this agreement is fortuitous as response and nonorthogonality effects are
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not negligible: The consideration of the inverse overlap matrix in the net probability
causes an increase of the cross section at low and intermediate impact energies. This
behavior reflects the fact that the overcounting of electrons in bound projectile states
is partly compensated by continuum channels. Target response counterbalances this
effect and brings the data back into within the experimental error bars, except for
the lowest impact energies where the theoretical cross section is still too high and
appears to have a wrong slope. We expect that a more refined response model will
solve this problem as response effects are obviously very important in slow collisions,
but are taken into account only in a global fashion by Eq. (5).

Fig. 2: Total cross section for net free electron production as a function of impact energy for

He+-Ne collisions. Lines: BGM results (see text for details). Symbols: experimental data from

Ref. [16] (full circles) and Ref. [17] (full triangles).

We proceed with considering the cross sections for finding respectively two and zero
electrons at the projectile after the collision, i.e., electron capture and electron loss. In
Fig. 3 we show results for capture obtained from three different analyses of the single-
particle solutions within the target response model: (i) the standard multinomial
analysis for single capture; (ii) the same analysis, but this time single and multiple
capture contributions are added; (iii) the improved analysis described in Sec. 2.2
that in contrast to the cases (i) and (ii) accounts for the antisymmetry and the finite
overlap of the propagated orbitals (these results are termed ’Pauli’ in the figure).
As expected, unphysical multiple capture events are strong in the standard multi-
nomial analysis at low impact energies. Above 100 keV/amu the results of the two
multinomial models merge, but they overestimate experiment by almost a factor of
two up to the highest energies considered. This is a direct consequence of the neglect
of the Pauli principle in the final states: As explained in closer detail in Ref. [5] both
spin-up and spin-down electrons contribute to capture and are not hindered by the
fact that the dominant final He(1s2) state, which is mainly formed by single capture
plus elastic scattering of the initial projectile electron is a spin singlet. The problem
is solved if we use our improved analysis based on inclusive probabilities. In addition,
this model does not yield appreciable multiple capture cross sections at low impact
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energies for the very same reason: only two electrons are allowed to populate the K
shell due to the Pauli principle.

Fig. 3: Total cross section for neutralization of the projectile as a function of impact energy for

He+-Ne collisions. Lines: BGM results (see text for details). Symbols: experimental data from

Ref. [16] (full circles) and Ref. [17] (full triangles).

It was also explained in Ref. [5] how the antisymmetry of the many-electron wave
function can influence the electron loss channel displayed in Fig. 4 even if there
is no apparent blocking of the relevant final states. Briefly, the inclusive analysis
redistributes the transferred electron density from Ne(K,L) such that He0 and He2+

formation is reduced, but He+ formation is increased compared to the multinomial
analysis. This effect is somewhat weakened by the occurrence of the finite overlap
integrals [Eq. (8)] that we did not consider in Ref. [5]. Figure 4 shows that the
present ’Pauli’ analysis leads to a reduction of the multinomial electron loss cross
section at impact energies where capture, i.e., He0 formation is strong, but in contrast
to our previous results (denoted by ’Pauli, SN+1,j = 0’) a substantial discrepancy
with experiment persists. As the present analysis is clearly more consistent than the
previous one from a theoretical point of view this implies that the electron loss channel
is not yet understood properly at low impact energies. The next step should be a
more refined treatment of response effects in order to approach the exact ’exchange-
only’ limit of TDDFT, in which only electron correlations are neglected, but all
other effects are taken into account accurately. It remains to be seen whether one
can understand the smallness of the experimental electron loss cross section below
EP = 100 keV/amu in this framework or whether electron correlation effects must
also be considered.
Electron correlations beyond the exchange-only limit are known to play a role at
higher impact energies, where the results of our different analyses coincide but some-
what underestimate experiment. In this region, the (e,2e)-like interaction of the
projectile electron with one of the target electrons (antiscreening) contributes to the
electron loss cross section. The contribution has been calculated in the Born ap-
proximation [14] and, very recently, in the local plasma approximation within the
dielectric formalism [15], and if it is added to our results the agreement with experi-
ment is improved.
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Fig. 4: Total cross section for electron loss from the projectile as a function of impact energy for

He+-Ne collisions. Lines: BGM results (see text for details). Symbols: experimental data from

Ref. [16] (full circles), Ref. [17] (full triangles), and Ref. [18] (open circles).

Fig. 5: Total cross section for pure single (q = 1) and double (q = 2) target ionization as a

function of impact energy for He+-Ne collisions. Lines: BGM results (see text for details). Symbols:

experimental data from Ref. [17] (full symbols) and Ref. [19] (open symbols).

Finally, we show in Fig. 5 charge-state correlated cross sections for pure single and
double ionization of Ne, where the projectile does not change its charge state. As
discussed above (and predicted in Ref. [5]) the inclusive analysis increases these cross
sections which correspond to He+ formation compared to the multinomial results.
Remarkably, rather good agreement with experiment, in particular for double ioniza-
tion is obtained in this model. This demonstrates again that the antisymmetry of
the many-electron wave function can affect the results significantly even if no obvious
Pauli blocking is operating. The reason for this subtle effect is the interrelation and
competition of different inelastic processes, in our case He0, He+, and He2+ formation
in the nonperturbative regime.
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4 Concluding Remarks

It was the purpose of this work to demonstrate that rather complicated many-electron
dynamics in ion-atom collisions with active electrons on projectile and target centers
can be understood on the basis of a single-particle picture which is sensitive to the
details of the electron rearrangement processes. In particular, our results show that
it is crucial to take into account the nonorthogonality of the propagated orbitals if
projectile and target electrons experience different potentials. Moreover, the anti-
symmetry of the final many-electron wave function as well as response effects in the
time-development of the system are important ingredients for a successful description
of experimental data. A necessary prerequisite for this study has been the develop-
ment of the basis generator method to obtain accurate solutions of the single-particle
equations under discussion.
In future work, we plan to test our model also on other collision systems with active
projectile and target electrons for which theoretical data is lacking. In addition, we
will refine the dynamical screening model in order to approach the exact exchange-
only limit of density functional theory. We believe that this will alleviate some of the
remaining discrepancies with experiments and — where this is not the case — help
us to pinpoint true electron correlation effects from the perspective of a well-founded
and meaningful theoretical treatment.
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[12] Lüdde, H.J., Kirchner, T. and Horbatsch, M. in ”Photonic, Electronic, and Atomic Collisions”,
edited by Burgdörfer, J., Cohen, J., Datz, S. and Vane, C.R. (Rinton Press, Princeton 2002)
p. 708.
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